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Abstract. Guessing entropy (GE) is a widely adopted metric that measures the
average computational cost needed for a successful side-channel analysis (SCA).
However, with current estimation methods where the evaluator has to average the
correct key rank over many independent side-channel leakage measurement sets,
full-key GE estimation is impractical due to its prohibitive computing requirement.
A recent estimation method based on posterior probabilities, although scalable, is
not accurate.
We propose a new guessing entropy estimation algorithm (GEEA) based on theoretical
distributions of the ranking score vectors. By discovering the relationship of GE with
pairwise success rates and utilizing it, GEEA uses a sum of many univariate Gaussian
probabilities instead of multi-variate Gaussian probabilities, significantly improving
the computation efficiency.
We show that GEEA is more accurate and efficient than all current GE estimations.
To the best of our knowledge, it is the only practical full-key GE evaluation on
given experimental data sets which the evaluator has access to. Moreover, it can
accurately predict the GE for larger sizes than the experimental data sets, providing
comprehensive security evaluation.
Keywords: Side-channel analysis · guessing entropy · i-th order success rate · multi-
variate Gaussian distribution · additive score distinguisher

1 Introduction
The seminal work of differential power analysis [KJJ99] revealed a realistic new threat to
crypto-systems: an adversary can learn the secret of crypto-algorithms using side-channel
leakage information from a physical implementation. An important question is how to
measure the vulnerability of a crypto-implementation against a side channel analysis (SCA).
Different metrics, such as mutual information, success rate and Guessing entropy (GE),
have been presented [SMY09]. While Mutual Information serves as an intermediate metric
to measure the dependency of side-channel leakage on key information, the commonly
used success rate measures the probability that an attacker correctly distinguishes the
true key candidate given certain number of leakage measurements. With the typical
divide-and-conquer approach in SCA of block ciphers, success rate works well for a single
key byte but does not scale for the entire key with many bytes (e.g., a full key of AES-128
consists of 16 bytes where each byte is retrieved independently). GE is defined as the
average rank of the true key among all key candidates across multiple data sets at certain
size. The higher GE, the more wrong key guesses have to be checked before the true
key value is evaluated. Thus, GE measures the average computation cost required for a
successful SCA and is deemed an appropriate leakage evaluation metric.

Practically useful GE evaluation for full-key recovery is very challenging. Currently
the typical GE estimation relies on an empirical method: finding the rank of the true key
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on many independent sets of side-channel measurements, and calculating the average rank.
Such GE estimation has been conducted commonly for a single-byte subkey, while finding
the exact rank of the correct full-key over all candidates is beyond available computational
capacity. This issue is addressed by a recent work [VCGS13], with an algorithm to estimate
the upper and lower bounds for the rank of the correct full-key. More efficient ranking
algorithms have been further developed [GGP+15, BLvV15, MOOS15, DW17, Gro18]. As
these ranking algorithms require access to a data set (e.g., with q measurement traces) to
find the correct full-key rank over the set, the empirical GE estimation needs to average
the ranks on N such independent data sets. Since the rank of the correct full-key generally
follows a highly skewed distribution with a large variance [MMOS16], a very large number
of N is needed for accurate GE estimation. Therefore, currently an evaluator can only
assess the vulnerability of a system to SCA with some N and q that are attainable to their
computation and collection capacity. The evaluator cannot predict the vulnerability to
adversaries with larger q than the acquired measurement sets.

At CHES 2017, Choudary et al. [CP17] proposed estimating GE from an alternative
quantity, Massey’s guessing entropy (GM), rather than from the correct full-key rank.
While they provide very scalable tight bounds for GM, GM calculation is based on the given
data set and suffers the same practical problem of needing to average over many data sets
for accuracy. It cannot predict the vulnerability of the system to an adversary with more
resource capacity. Moreover, since GM is developed by using posterior probabilities of key
candidates as the rank probabilities, the accuracy of GE is limited as we will demonstrate
later in this paper.

This work proposes an accurate and fast GE estimation method based on the theoretical
multivariate Gaussian distribution of the ranking score vectors. Previous work [Riv09,
LPR+14, FLD12, FDLZ15] have used the multivariate Gaussian distribution of single-
byte subkey score vectors to derive the success rate formula for subkeys. However, this
multivariate Gaussian distribution has not been used to calculate either GE or the general
i-th order success rate (which is the probability that the SCA ranks the true key as one of
the top i candidates) for the multi-byte full-key.

There is a technical difficulty in using such theoretical formula directly, because the
multivariate Gaussian distribution probability calculation involves high-dimensional integral
whose exact computation is not feasible even for single-byte key evaluation. Therefore,
when calculating single-byte subkey success rate, simulated sets of score vectors from
this multivariate Gaussian distribution are repeatedly generated, and the proportion of
successful subkey recoveries is taken empirically as the success rate and subsequently GE
is derived too. We call such estimation the pseudo-theoretical estimator, as it involves
simulated data sets from the theoretical distribution for calculating success rate and ranks
of correct subkey. While it can give very accurate single-byte subkey GE estimation, as the
number of key bytes increases the pseudo-theoretical GE estimator also becomes impractical
as it encounters the same obstacles for the empirical GE estimator mentioned above. For
a full key of B bytes, score vectors from the B multivariate Gaussian distributions are
generated, the rank of the correct key is figured out using a ranking algorithm, and then
the average rank is obtained over N simulated data sets. Due to the large variance of
the rank, the pseudo-theoretical GE estimator requires a large number of N for accuracy
which exceeds the available computational capacity when B is large.

Realizing that the method of averaging the correct key ranks may be the barrier
for obtaining accurate GE from the theoretical multivariate Gaussian distribution, we
look closely into theoretical properties of GE to facilitate fast and accurate full-key GE
estimation. We discover an important property of GE, i.e, GE only depends on the
pairwise success probabilities (the probability that the correct key score beats another key
candidate score). This enables GE estimation without going through the i-th order success
rates. Note that calculation of the i-th order success rates for the full key, even knowing
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the B multivariate Gaussian distributions, is nontrivial. We express GE as the sum of
pairwise success probabilities, which can be calculated directly from univariate Gaussian
distributions. Since the univariate Gaussian probabilities are much faster to compute and
are much less variable than the ranks, we can evaluate the sum through sampling the
univariate Gaussian probabilities. This method is much more accurate than sampling the
ranks as used in the empirical GE estimator and the pseudo-theoretical GE estimator. A
GE estimation algorithm (GEEA) is developed accordingly, which can estimate the full
AES-128 key GE accurately in practical computational time.

The paper is organized as follows. Section 2 introduces the concepts and notations
about GE and success rates, reviews the practical issues of empirical GE estimation, and
reviews related theoretical results on GE and success rates. Section 3 develops our GE
estimation algorithm. Section 4 uses numerical experiments to compare our proposed
GEEA and other GE estimation methods. We end the paper with conclusions in Section 5.

2 Background and Preliminaries
2.1 Guessing Entropy and i-th Order Success Rates
We consider SCAs that use physical side-channel measurements to learn about a secret
cypto key k ∈ K. The adversary conducts q queries to the device under attack, and for
each query records the (plaintext) input xi ∈ X and the leakage measurements li ∈ L, for
i = 1, ..., q. Based on the data sets L = (l1, l2, ..., lq) and X = (x1, x2, ..., xq), SCA derives a
score s(k|L,X ) reflecting the log-likelihood of each key candidate k ∈ K being the correct
key. We denote the correct key value as kc. Sorting the scores from highest to lowest, the
position of s(kc) is the rank of correct key rank(kc|L,X ). If an adversary tries the i most
likely key candidates, he/she can recover the secret key if and only if rank(kc|L,X ) ≤ i.
The success probability of such an attack is called the i-th order success rate (SR) of the
SCA:

SRi = PL,X [rank(kc|L,X ) ≤ i]. (1)
Generally, the first-order success rate is studied most often in literature and is simply
referred to as the success rate.

The average rank of the correct key with a given number of measurements (q) is called
the Guessing Entropy [Mas94, SMY09]:
Definition 1. GEq = EL,X :|L|=q,|X |=q[rank(kc|L,X )].

Since the rank of the correct key indicates the minimum number of key candidates
that the SCA adversary has to try to be successful, GEq reflects the expected amount
of computational effort needed for a successful SCA given a number of q side channel
measurements. The subscript “q” emphasizes the fact that GE depends on the size q.
Throughout the paper, in places where the size q is evident and not essential to the
discussion, we drop the subscript for brevity. GE is related to the success rates (first-order
and higher-order) as

GE =
∑|K|
i=1 i× PL,X [rank(kc|L,X ) = i]

=
∑|K|
i=1

∑i
a=1 PL,X [rank(kc|L,X ) = i]

=
∑|K|
a=1

∑|K|
i=a PL,X [rank(kc|L,X ) = i]

=
∑|K|
a=1{PL,X [rank(kc|L,X ) = a] + PL,X [rank(kc|L,X ) > a]}

=
∑|K|
i=1 PL,X [rank(kc|L,X ) = i] +

∑|K|
i=1 PL,X [rank(kc|L,X ) > i]

= 1 +
∑|K|
i=1(1− SRi).

(2)

Equation (2) indicates that GE can be calculated when all i-th order success rates are
known. However, our analysis finds that GE can be calculated instead from the pairwise
success rates, making GE estimation much faster and easier.
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2.2 Issues of Empirical Estimation of GE
Typically GEq is estimated empirically following Definition 1: collect N independent sets
of (L1,X1), ..., (LN ,XN ) each with the size q. On each set, the evaluator finds the correct
key’s rank rank(kc|Lj ,Xj). Then GEq is estimated by:

GEq = 1
N

N∑
j=1

rank(kc|Lj ,Xj). (3)

Here we denote the empirical estimator with the bar on top. However, there are several
issues to prevent this estimator GEq from working for full-key evaluation in practice.

Issue 1. Leakage measurements collection cost: A total number of N × q leakage mea-
surements are needed for one empirical GEq. The collection capacity generally limit the
available number N , which, if not large enough, would affect the accuracy of full-key GE
estimation. Also, with the empirical GE estimation method, GEq cannot be predicted for
any q value that exceeds the size of the evaluation data set.

Issue 2. Large variation of rank(kc): As pointed out by the prior work [MMOS16], “the
key rank is a random variable with inherently large variation”, and the large variance
occurs when the GE value falls in “exactly the range in which the assumed enumeration
capability of an adversary transitions from realistic to unrealistic”. Such range is where
GE would be most useful as a security metric and requires accurate estimation. From
Equation (3), V ar(GE) = 1

N V ar[rank(kc)], the larger the N , the smaller the empirical
GE variance. However large N makes the computational cost prohibitive as GE calculation
requires running the heavy ranking algorithm for N times.

To address the first issue, we propose to estimate GE based on theoretical multivariate
Gaussian distributions instead of specific data set, which will be discussed in Section 2.4
below. To solve the second issue, we further utilize a theoretical relationship between
GE and the pairwise success rates derived in Section 3.1. This relationship allows us to
calculate GE without finding rank(kc) by using the ranking algorithms, and the quantities
involved have much less variance compared to the ranks.

2.3 Posterior Probability Based GM Bounds
At CHES2017, Choudary and Popescu proposed another estimation method for multi-byte
GE [CP17]. As Equation (2) indicates, GE can be estimated if we know the i-th rank
probability P[rank(kc|L,X ) = i] for all i. While these rank probabilities are not easy
to get, the prior work [CP17] used the i-th largest posterior probability Ppost(k|L,X ) as
P[rank(kc|L,X ) = i]. This estimator of GE is called GM [CP17]. Since the posterior
probability for a multi-byte key is the product of the posterior probabilities of each byte
subkey (assuming key byte scores are independent), they derived a bound for GM from
the subkey posterior probabilities. The bounds are shown to be tight, easy to scale up and
can be computed very fast.

However, the GM estimator also has some issues. First, since posterior probabilities
are used, GM(L,X ) are data set dependent. GM has to be averaged over N data sets,
and hence they suffer the same practical issues of the empirical GE estimator as discussed
in Section 2.2. Second, there is no theoretical guarantee that using posterior probabilities
in GM gives the correct answer, i.e., ELq,Xq

[GMLq,Xq
] = GEq is not proven. In fact,

this equality does not always hold as we demonstrate theoretically in the Appendix, and
empirically in Section 4.2.1. Third, the posterior probabilities are only available for SCAs
with explicit leakage model, thus GM cannot be used to evaluate the new Deep Learning
based SCAs without known leakage model [PSB+18].
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2.4 Multivariate Gaussian Distribution of the Score Vector and Pseudo-
Theoretical GE Estimation

One property we will use in our GE estimator is that the score vector approximately
follows a multivariate Gaussian distribution. This has also been used in literature to
derive theoretical formulas for single-byte key success rate [LPR+14, FDLZ15, Riv09]. As
in [LPR+14, FDLZ15], we consider a (|K|−1)-sized comparison vector ~∆ = (∆kg )kg∈K/{kc}
used in SCA where

∆kg = s(kg)− s(kc). (4)

Here kc denotes the correct key value and kg is any other wrong key guess, and s(·) function
is the score vector used in SCA, e.g., the Pearson correlation in CPA and Difference-of-
Mean in DPA. In SCA, the distinguisher picks the correct key kc based on the score: when
s(kc) > s(kg) , the correct key is successfully distinguished.

The comparison vector ~∆ satisfies the definition of additive distinguisher [LPR+14].
Assuming that the leakage measurements l1, l2, ..., lq are independent of each other and
follow the same distribution, then such an additive vector ~∆(X ,L) = 1

q

∑q
j=1

~∆(xj , lj)
follows a multivariate Gaussian Distribution N (~µ∆,

1
q
~Σ∆) [LPR+14] due to the Central

Limit Theorem. Here ~µ∆ and ~Σ∆ are respectively the mean vector and variance matrix
of ~∆(x1, l1) with size |K| − 1 and (|K| − 1)× (|K| − 1), respectively. A component of the
comparison vector ~∆ having positive value means that the corresponding kg is chosen over
kc. Hence rank(kc) = Npos(~∆) + 1, where Npos(~x) denotes the function who counts the
number of positive components of input ~x. Thus the theoretical GE value becomes the
expectation of Npos(~∆) + 1 under this multivariate Gaussian distribution. That is,

GE =
∫
~∆[Npos(~∆) + 1] · φ(~∆; ~µ∆,

1
q
~Σ∆) d~∆, (5)

where φ(·; ~µ, ~Σ) denotes the probability density function for the N (~µ, ~Σ) distribution. For
single-byte subkey, ~µ∆ and ~Σ∆ can be profiled from measurement traces as shown in prior
work [Riv09].

There are a couple of practical issues computing GE from formula (5): (a) analytic
or numerical evaluation of high-dimensional integral is computational prohibitive so that
direct evaluation using (5) is impractical even for single-byte subkey; (b) the dimensions
of ~∆ and ~Σ∆ for full-key case are very high, since |K| has to be large enough to prevent
cryptanalysis. It is challenging but imperative to find a way to evaluate (5) not from
the full-key multi-variate Gaussian distribution but by combining the B subkey multi-
variate Gaussian distributions. For example, for AES-128, we need a method to evaluate by
combining the 16 multivariate Gaussian distributions (each for a single-byte subkey), rather
than the impossible direct evaluation from the 2128 − 1 dimensional full-key multivariate
Gaussian distribution.

We first evaluate single-byte GE, and we can compute (5) empirically to overcome the
issue (a): generate N samples ~∆1, ..., ~∆N from the profiled multivariate Gaussian distribu-
tion N (~µ∆,

1
q
~Σ∆), then estimate the integral using the empirical average of Npos(~∆j) + 1

among j = 1, ...N . We define this method as the pseudo-theoretical GE (PS-TH-GE)
estimator:

GETH,q = 1
N

N∑
j=1

[Npos(~∆j) + 1], (6)

for ~∆1, ..., ~∆N generated from N (~µ∆,
1
q
~Σ∆). We note that this is also the method

used in estimating single-byte success rates before. While [LPR+14, FDLZ15] derives
the theoretical multivariate Gaussian distribution, the ith-order success rate formula
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∫
~∆ 1

Npos(~∆)+1≤iφ(~∆; ~µ∆, ~Σ∆)d~∆ is not directly evaluated with high-dimensional integral.
Rather, this integral is also computed using the corresponding empirical quantity on
~∆1, ..., ~∆N generated from the theoretical multivariate Gaussian distribution. We define
this pseudo-theoretical (PS-TH) method to emphasize that the evaluation uses samples
generated from the theoretical distribution. For the full-key case, the usage of empirical
quantity on generated samples runs into the issue of large variance for the GE evaluation
as we discuss next. Such issue does not affect the first-order success rate evaluation which
we will explain afterwards.

To solve issue (b), we make the assumption that the comparison scores for the key
bytes are independent. Then comparison vectors can be generated separately for each key
byte where the dimension of the multivariate Gaussian distribution is 28 − 1, and then
rank(kc) = [Npos(~∆) + 1] can be found from the B byte-wise comparison vectors using
the ranking algorithm. Averaging this rank(kc) over N such generations gives the PS-TH-
GE estimation for the full-key. However, the PS-TH-GE estimator can run into similar
difficulties as the empirical GE estimator. Note that the first issue of leakage measurements
collection cost in Section 2.2 is greatly alleviated since PS-TH-GE estimator only requires N
generated sets of comparison vectors rather than the N sets of real physical measurements.
However, the second issue in Section 2.2 remains the same for the PS-TH-GE estimator:
the large variance of rank(kc) [MMOS16] implies that accurate GE estimation will require
such a large N value that it becomes computationally impractical. In summary, although
the PS-TH-GE estimator explores multivariate Gaussian distributions rather than relies
on data sets of real measurements, it still does not scale well for full-key cases. The reason
is essentially that it still uses ranks, which are computationally prohibitive and require
averaging over large independent simulated data sets.

Here we note that the computational issue for the full-key PS-TH estimator only applies
to the GE evaluation but not for first-order success rate since the latter is based on the
empirical average of the quantity 1

Npos(~∆)=0 instead of rank(kc). While the variance
of full-key rank(kc) is very big, the variance of 1

Npos(~∆)=0 is upper bounded by 1/4.
Also, while the determination of rank(kc) requires a computationally intensive ranking
algorithm, the determination of 1

Npos(~∆)=0 is easy and fast since we only need to check
that there are no positive components for each byte comparison vector separately.

The above discussion of PS-TH-GE estimator makes the assumption that the comparison
scores for the key bytes are independent. This assumption is commonly made in many prior
work on ranking algorithms and GE evaluation [VCGS13, GGP+15, BLvV15, MOOS15,
DW17, Gro18, CP17]. Our work is addressing an issue of existing methods – inability to
provide accurate GE estimation, under the same independent key byte scores assumption.
Recently there are interests in extending the security evaluation work to cases where the
key byte scores are dependent. Those cases are out of scope of this work and will be our
future work.

We describe our theory-based GE estimation in the next section. The stark difference
is our method computes the integral in equation (5) using a quantity that is much less
variable than rank(kc) and is much faster to compute than rank(kc). This results in an
accurate and fast GE estimation so as to make full-key GE estimation feasible.

3 Guessing Entropy Estimation Algorithm

In this section, we derive and describe our guessing entropy estimation algorithm (GEEA)
based on a key insight on the relationship between GE and pairwise success rates. A SCA
succeeds if the score for the correct key is higher than that of any other wrong key guesses.
We define P[s(kc) > s(kg)] as the pairwise success rate.
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3.1 Estimate Guessing Entropy from Gaussian Distributions
GE relates to the sum of pairwise success rates as stated in the following lemma:

Lemma 1. GE = 1 +
∑
kg 6=kc

[1− P[s(kc) > s(kg)]]

Proof. Let 1s(kc)>s(kg) be the indicator that the correct key is successfully distinguished
from kg. Then rank(kc) = 1 +

∑
kg 6=kc

[1− 1s(kc)>s(kg)]. Hence

GE = E[rank(kc)] = 1 +
∑
kg 6=kc

E[1− 1s(kc)>s(kg)]
= 1 +

∑
kg 6=kc

{1− P[s(kc) > s(kg)]}.
(7)

Denote the incorrect keys in K/{kc} as k1, ..., k|K|−1. Recall the definition of comparison
vector ∆kg

(|K| − 1 dimension) by Equation (4) in Section 2.4. Then the i-th element ~∆i

in the vector ~∆ follows the univariate Gaussian distribution N (µi, σ2
ii/q), where µi denotes

the i-th element in ~µ∆ and σ2
ij denotes the element in i-th row and j-th column of ~Σ∆.

Hence the pairwise success rate is

P[s(kc|X ,L) > s(ki|X ,L)] = P[∆ki
(X ,L) < 0] = Φ( −µi

σii/
√
q

) = 1− Φ(
√
qµi

σii
), (8)

where Φ(·) denotes the cumulative distribution function (CDF) of N (0, 1). Plugging this
theoretical pairwise success rate formula (8) into (7), we have the following theorem.

Theorem 1. For an additive score distinguisher, assuming independent leakage measure-
ments l1, l2, ..., lq, then

GE = 1 +
|K|−1∑
i=1

Φ(
√
qµi

σii
). (9)

In practice, we need to estimate the mean vector µi and diagonals of the variance
matrix σ2

ii. However, the given evaluation set (XE ,LE) is not an infinite set but has only
|LE | measurements, we have to estimate µi and σ2

ii using the sample mean and the sample
variance of the comparison-scores, where the comparison-score for each key on each leakage
measurement is ∆k,j = s(k; lj , xj)− s(kc; lj , xj) for k ∈ K and j = 1, ..., |LE |.

µ̂i = 1
|LE |

|LE |∑
j=1

∆ki,j , σ̂2
ii = 1

|LE |

|LE |∑
j=1

[∆ki,j − µ̂i]2. (10)

Then based on evaluation set (XE ,LE), our estimator of GE for any random (X ,L) of
size q = |L| is :

ĜEq = 1 +
|K|−1∑
i=1

Φ(
√
qµ̂i

σ̂ii
) (11)

Remark 1. Note here we only need to estimate σ2
ii, the diagonal elements of the variance

matrix ~Σ∆, rather than the entire matrix as done before [Riv09]. This results in a much
smaller number of variance parameters to be estimated: |K| − 1 instead of |K|(|K| − 1)/2 1.

1Using the confusion coefficients work [FDLZ15], we can further reduce the number of variance
parameters to estimate from |K|−1 to 1 for DPA and CPA attack which does require an explicitly assumed
leakage function. Generally we recommend the profiling approach of [Riv09] to estimate µi and σ2

ii to
avoid the adverse effect of an inaccurately specified leakage model.



Ziyue Zhang, A. Adam Ding and Yunsi Fei 33

GE only depends on the sum of all i-th order success rates, as shown in equation (2).
From equations (7), the sum of all i-th order success rates equals to the sum of pairwise
success rates

∑
kg 6=kc

P[s(kc) > s(kg)] which are captured by the diagonal variances. Given
the diagonal variances, varying the off-diagonal variance element can only affect how this
sum is distributed among different i-th order success rates but not the sum itself. Let
us consider the simple case of distinguishing only two wrong key candidates kg1 and kg2
from kc. With two fixed diagonal variance elements σ2

kg1,kg1
and σ2

kg2,kg2
, the probabilities

of the successful distinction of kc versus kg1 and the successful distinction of kc versus
kg1 are fixed, thus their sum is fixed. The off-diagonal variance element at {kg1, kg2} is
the covariances between those two successful distinctions, thus affect the probability of
joint successful distinction. A bigger positive covariance indicates that the two pairwise
distinctions tend to succeed together more often, and the first-order success rate (i.e., the
probability of both pairwise distinctions succeed) is bigger. However, this also indicates that
the two pairwise distinctions tend to fail together more often, thus the second-order success
rate (i.e., one minus the probability of both pairwise distinctions fail) is smaller. The
off-diagonal variance element’s effect on the first-order success rate and its effect on the
second-order success rate cancel each other out, and the sum remains the same. Overall, the
off-diagonal variance element affect both the first-order success rate and the second-order
success rate individually, but not the summation of them (the guessing entropy).

Remark 2. Some SCA involves a profiling stage to estimate some parameter θ in the
score function s(k; lj , xj ; θ), e.g., profiling in template attack or training a DNN. In such
cases, µi and σ2

ii should not be estimated on the same profiling set used to estimate θ, since
overfitting can result in inaccurate µ̂i and σ̂2

ii. Rather, a separate evaluation set (X ,L)
should be used for estimating µ̂i and σ̂2

ii after profiling θ is done. This is similar to the
common idea of separating training and validation data in machine learning procedures.

3.2 Guessing Entropy Estimation Algorithm (GEEA) for the Full-Key

As mentioned in earlier section, a big challenge in full-key GE evaluation is that the size
|K| of the whole key space does not allow enumeration over it in practical time. Thus we
need to consider how to decompose the calculation of Formula (11) by key bytes.

Assume the secret key of a block cipher has B bytes, with each byte of b-bits. Generally
SCA is conducted separately on each byte following the divide-and-conquer principle. Let
k = (k1, k2, ..., kB) with km denoting the m-th subkey byte, m = 1, ..., B.

The mean and variance of the subkey comparison-score ∆m
km

i
= s(kmi ) − s(kmc ) are

estimated as before using Equation (10), separately for each m = 1, ..., B. Here we
consider the typical case where the full key comparison score is the sum of byte comparison
scores. This is under the assumption of independent key bytes and the byte raw scores
are proportional to their log-likelihoods. Therefore the mean and variance of the full
key score is respectively the sum of mean and variance of byte scores. Consequently, the
comparison-score of the whole key kg versus kc is computed as ∆kg =

∑B
m=1 ∆m

km
g

whose
mean and variance estimators become:

µ̂kg
=

B∑
m=1

µ̂mkm
g
, σ̂2

kg,kg
=

B∑
m=1

(σ̂mkm
g ,k

m
g

)2. (12)

Notice that for kg 6= kc, it is still possible that one of its bytes agrees with the correct key
byte: kmg = kmc for some m. When kmg = kmc happens, since the byte comparison score of
kmc with itself is always zero, µ̂mkm

g
and σ̂mkm

g ,k
m
g

take the value zero in (12).
According to Theorem 1, and using the mean and variance estimator expressions in



34 A Fast and Accurate Guessing Entropy Estimation Algorithm for Full-key Recovery

equation (12), GEEA calculates

ĜEq = 1 +
∑

kg∈K/{kc}

Φ(
√
qµ̂kg

σ̂kg,kg

) = 1 + 1
|K| − 1

∑
kg∈K/{kc}

f(kg), (13)

where f(kg) = (|K| − 1)Φ(
√
qµ̂kg

σ̂kg,kg
). Comparing equations (7) and (13), we see that the

f(kg) here is an estimator for the quantity (|K| − 1){1−P[s(kc) > s(kg)]}, a scaled version
of (1− pairwise success rate).

For a full key with large B value, the enumeration through the key space (whose size
is 2bB) can be computationally prohibitive. In this case, we sample M guessed key kg
from the discrete uniform distribution on K/{kc}. Denote the set of sampled keys by S, a
sample version of ĜEq becomes

G̃E = 1 + 1
M

∑
kg∈S

f(kg). (14)

where M = |S|.
Note that V ar(G̃E) = V ar[f(kg)]/M . Hence for accurate G̃E, the sampling rate M

needs to be large enough so that V ar[f(kg)]/M is reduced to achieve a specified accuracy.
We summarize GEEA in Algorithm 1 below 2

Algorithm 1: GE Estimation Algorithm
Input :Key byte score distinguisher skm;x,l;

Evaluating Set (LE ,XE);
Size of leakage measurement set q desired for GE prediction;

Intermediate :Key byte score matrices Sm = (smi,j)2b×|L|;

Estimation for ~̂µm∆ and diagonal elements of ~̂Σm∆ , m = 1, ..., B
Output : G̃E for [L,X ] of size q
ProfilingStage :Profile means and variances for univariate Gaussian

distributions (the complexity is only B × (2b − 1))
for m← 1 to B do

(for each key byte)
for i← 1 to 2b − 1 do

(for key byte m, calculate the comparison vector (of size 2b − 1) based on
the data set)
µ̂mi = 1

|LE |
∑|LE |
j=1 [s(kmi ; lj ;xj)− s(kmc ; lj ;xj)]

(σ̂mi,i)2 = 1
|LE |

∑|LE |
i=1 [s(kmi ; lj ;xj)− s(kmc ; lj ;xj)− µ̂mi )]2

end
end
EvaluationStage :Calculate GE from univariate Gaussian probabilities
Create a random subset S = (k1, ..., k|S|) ⊂ K/{kc} with size M = |S|;

G̃Eq = 1 + |K|−1
M

∑
ki∈S Φ(

√
q
∑B

m=1
µ̂m

km
i√∑B

m=1
(σ̂m

km
i

,km
i

)2
)

Comparing to the empirical GE estimation and the pseudo-theoretical GE estimation
both of which sample rank(kc), our GEEA samples f(kg) instead. The rank(kc) generally
follows a highly skewed distribution with large variance. Our experiments in Section 4

2The GEEA estimator G̃Eq uses estimated means µ̂m
kg

and variances (σ̂m
kg,kg

)2, thus requires accurate
profiled values of these quantities. Since for each byte, there are 255 such means and 255 such variances,
we recommend to profile them with number of measurement traces at least two order of magnitudes higher
(i.e., > 51K traces).
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show that f(kg) follows a symmetric distribution with much smaller variance than that
of rank(kc). Hence, with the same sampling rate M = N , our GEEA gives a much more
accurate estimation G̃E than the empirical GE estimation GE.

The two samplings are distinctively different: G̃E is sampling kg over possible key
candidates while GE is sampling L over possible sets of leakage measurements. Inspection
of the formulas provides hints on why G̃E has much smaller variance than GE. The reasons
are twofold. First, f(kg) uses the expected value of 1s(kc)>s(kg) while rank(kc) uses the
realization of 1s(kc)>s(kg). Variance of P(1s(kc)>s(kg) = 1) is generally much lower than
the variance of 1s(kc)>s(kg). Second, rank(kc) is affected by the correlation between the
comparison scores 1s(kc)>s(kg1) and 1s(kc)>s(kg2) for two different guessed key candidates
kg1 and kg2. These correlations are reflected by the off-diagonal elements of ~Σ∆, which
cause clusters of guessed key candidates kg to be simultaneously distinguished correctly (or
incorrectly) against kc. The empirical GE estimation GE and the pseudo-theoretical GE
estimation GETH are both essentially calculating GE using all empirical i-th order success
rates. Our GEEA uses only the pairwise success rates removing the correlation between
key candidates kg1 and kg2, which also leads to less variable estimation. These two reasons
make the variance of f(kg) to be much smaller than the variance of rank(kc). Therefore,
when both use the same number of sampling N = M , G̃E is much more accurate than
GE.

Furthermore, when using the same sampling rate N = M , our GEEA is faster by
several orders of magnitude. In one sample(ki ∈ S), GEEA only needs to do one univariate
Gaussian CDF evaluation(Φ). In contrast, the empirical and pseudo-theoretical GE
estimation both need to collect q traces and calculate (or generate) the score vectors to
find the rank(kc). Just the running time of the ranking algorithm, to find rank(kc), is five
orders of magnitude longer than the time for the univariate Gaussian CDF evaluation as
measured in Section 4 below. The faster computation of GEEA allows it to use a sampling
rate M several orders of magnitude higher than the sampling rate N of the empirical and
pseudo-theoretical GE estimation with comparable computing time. In the next section,
we conduct detailed numerical comparison of GEEA with other GE estimation methods
on two real data sets. The numerical studies show that GEEA can achieve reliable full-key
GE estimation while none of the state-of-the-art methods can.

4 Experimental Results
In this section, we conduct detailed numerical comparison of our GEEA ĜE (for single-
byte) and G̃E (for full key) with other GE estimation methods, namely the empirical
GE (EMP-GE) estimation GE, the pseudo-theoretical GE (PS-TH-GE) estimation GETH
and GM [CP17] on two real power measurement data sets for AES implementations.
We first show the performance in the one-byte case where GE does give reasonable
estimates, to show its agreement with GETH and ĜE, while GM may not provide correct
estimations. Then we study the performance as the key byte number increases, and the
results demonstrate the advantage of GEEA for full-keys with multiple bytes.

4.1 Experimental Setup
4.1.1 Experiment Databases

For the first data set(SGII-1M), we implemented an unmasked AES-128 on a Sasebo-GII
board 3 and collected 1 million power measurements with random plaintexts following
uniform distribution. We estimate GE of the profiled template attacks on the AES SBox

3http://www.risec.aist.go.jp/project/sasebo/
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lookups in the first round. The first 700, 000 power traces are used to profile a Gaussian
templates GauTemp700k based on leakage measurements at the most leaky time-point.
The template targets the SBox output y = SBox[x

⊗
kc] where x and kc respectively

denote the plaintext and the secret key. Then the remaining 300, 000 power traces are
used to evaluate GE.

The second data set is the public benchmark ASCAD database 4 [PSB+18]. It provides
a set of power traces from a first-order protected software AES running on an ATMega8515
board, as well as benchmarks for common SCAs such as the template attack and some
Deep Learning-based SCAs in the first AES round. ASCAD data set contains three
types of leakage measurement: aligned measurements, measurements with misalignment
caused by insertion of randomly generate perturbations with two different bounds. Those
measurements are labeled in the database as: leakage without desychronization; leakage
with 50 maximum desychronization; leakage with 100 maximum desychronization. Each
type of measurement contains 50, 000 traces to train the Deep Learning Models and another
10, 000 traces for testing. We use the test set to evaluate GE of those trained DL models.

4.1.2 GE Estimations

In this section, we review how the four GE estimations are calculated and outline some
comparison results with details presented later in Section 4.2 and 4.3.

Given a profiled template or pre-trained ML-model, the evaluator collects another
leakage measurement set L with size |L| to evaluate how powerful the attack is. To calculate
GE of the attack using q leakage measurements, the two empirical method EMP-GE and
GM first separates L into |L|q independent subsets, and compute rankkc

and GM on each
independent subset. Then those numbers are averaged over the |L|q subsets to yield the
estimations GE and GM . The two theoretical based estimators PS-TH-GE and GEEA
calculate the GE value based on the multivariate Gaussian distributions whose parameters
are profiled from the entire L. For PS-TH-GE, score vectors are generated from those
multivariate Gaussian distributions for each subset, rankkc

is calculated on each subset
and then averaged across those subsets to get GETH . For GEEA, ĜE is calculated directly
from (11) through summation over the key space when the key space is small (e.g., one
key byte). When the key space is too big to enumerate, GEEA takes M samples of f(kg)
and averages them to get G̃E .

Note that there are uncertainties involved when the above methods use sampling.
To quantify and show these uncertainties, we will draw the confidence bounds for those
estimators. As there are at most |L|q independent subsets, the estimators GE and GM
becomes unreliable as q increases. In one byte case, we can generate many sets from
the multivariate Gaussian distributions and get accurate GETH to agree with the exact
theoretical value ĜE . For multiple bytes case, if we sample enough times, GETH and
G̃E both converge to the theoretical GE value. However, our numerical studies will show
that the computational cost of GETH is much higher than G̃E , and only GEEA can give
accurate useful GE estimation while other methods cannot.

4.2 Comparison of GE Estimations on a Single Key Byte

For the single key byte here, the rankkc ranges from 1 to 28 = 256 and thus has limited
variance. This means that the state-of-art EMP-GE estimator GE can be reasonably

4https://github.com/ANSSI-FR/ASCAD
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accurate, and we can check the correctness of the theoretical GE estimators from the
comparison with GE.

4.2.1 Comparison of GE Estimations on SGII-1M dataset

Figure 1 plots the estimations of GEq, on the first data set SGII-1M, against the number
of traces q for the four methods: EMP-GE, PS-TH-GE, GEEA, and GM. We also plotted
the 95% confidence intervals for the EMP-GE GE, which is based on rank(kc)s from
N = 300k

q independent subsets for each q value.

Figure 1: Comparison of four one-byte GE estimations (namely EMP-GE, PS-TH-GE,
GEEA, and GM) of the template attack on SGII-1M data set. We also plot the 95%
confidence intervals for EMP-GE, whose upper bound and lower bound are labeled
respectively by EMP-GE-CI-up and EMP-GE-CI-low.

We can see that the two theoretical based estimators PS-TH-GE and GEEA are very
close, and both fall within the confidence intervals of EMP-GE. This indicates good
agreement among the three methods in this case. In contrast, the GM estimation GM is
consistently much lower than other three estimations. As discussed in section 2.3, GM
estimator is based on using posterior probabilities as the correct key ranking probabilities.
Since these probabilities theoretically are not the same, GM may differ from GE as occurred
in this case. Such inaccuracy will affect the security evaluation. For example, if security
assessment requires GE ≥ 80 when q = 500, the GM estimator will falsely claim that the
AES implementation fails to pass the security specification with an GE estimation of 60
while the true GE value is much higher.

Furthermore, we can observe that the confidence interval of EMP-GE GE widens as q
value increases. The reason is that there are only N = 300k

q independent subsets available,
thus GE can become less accurate as q grows. The accuracy of GE will become a more
serious issue in the multi-byte key case discussed in Section 4.3 below, since the variance of
rank(kc) will be much larger in the range where the enumeration capability of an adversary
becomes unrealistic.
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Since the size of the key space is only 256, we can enumerate over it in Equation (11)
and get the exact GEEA estimator ĜE. The PS-TH-GE estimator GETH is calculated
using the average of rank(kc)s based on N = 10k samples of scores generated from the
multivariate Gaussian distributions. We can see that PS-TH-GE curve overlaps with the
GEEA curve, as their values agree with each other. The confidence intervals (omitted from
the Figure) of GETH are very narrow and visually overlap with ĜE if plotted. Here we
used a large N = 10k value so that PS-TH-GE GETH indeed converges to the theoretical
value of GEEA estimator ĜE. The N value needed for GETH to accurately converge will
increase as variance of rank(kc) increases, and the computational cost becomes an issue
for GETH in the multi-byte cases studied later.

4.2.2 Comparison of GE Estimations on ASCAD dataset

We further compare the estimation methods of GE for Deep Learning-based SCAs
using ASCAD database. Note that for the Deep Learning-based SCAs, there are no explicit
leakage models and therefore no posterior probabilities. The GM estimation cannot be
calculated here. In addition to empirical results in the previous subsection that shown
GM is a very biased estimator for GE, the Appendix provides a theoretical explanation
why GM is often more biased than GEEA.

We plot the GE estimations for two types of DNN models attacks on the leakage
measurements with 50 maximum desychronization : one using a multi-layer perceptron
(MLP) network and the other using a convolutional neural network (CNN). We use the
pre-trained networks provided in the database [PSB+18] which target the 3rd byte in the
first round of a protected AES-128. With desychronization, the pre-trained MLP model
cannot recover kc while pre-trained CNN model can successfully identify kc with enough
traces. We evaluate GE of both attacks on the test set of leakage traces.

Figure 2(a)-(b) plot GEEA, PS-TH-GE and EMP-GE estimations, together with
confidence intervals for EMP-GE. Again we see that GEEA and PS-TH-GE curves track
each other, and both are well within the confidence intervals for EMP-GE. Here EMP-GE
estimation is calculated using N = 10k

q independent subsets, while PS-TH-GE estimation
is calculated using N = 10k generated score sets. Note that the pre-trained MLP model
attack fails on the desychronized data, which is reflected as the GEEA and PS-TH-GE
curves actually increase as q grows and exceed |K|/2. The theory based GEEA and
PS-TH-GE can provide accurate GE estimations both when SCA succeeds and when SCA
fails.

Here we have seen that, with only N = 10k
q independent subsets, GE becomes unreliable

with very wide confidence intervals. GETH can converge to the theoretical value in both
two cases by using a large N = 10k value.

4.3 Comparison of GE Estimations in Multi-byte Cases

Since GE reflects the average computational effort needed for a successful SCA, it
is most useful when evaluating the full-key attack. However, as mentioned above, large
variance of rank(kc) in a large key space often means that the limited N independent
subsets available is not enough to result in accurate EMP-GE GE. This large variance
happens particularly when the GE value ranges from 240 to 2100 where the adversarial
enumeration capacity changes from realistic to unrealistic, and accurate GE evaluation
is most needed for security evaluation. When we calculate 95% confidence intervals of
EMP-GE for the template attack on the full 16-byte AES key in the SGII-1M data set,
the intervals are too wide (generally even include negative values) to be useful for security
assessment.
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(a) Comparison of three GE Estimators on CNN Attacks (EMP-GE, PS-TH-GE, and GEEA)

(b) Comparison of three GE Estimators on MLP Attacks (EMP-GE, PS-TH-GE, and GEEA)

Figure 2: Comparison of One byte GE estimations on two types of DNN-SCA using
ASCAD database. We also plot the 95% confidence intervals for EMP-GE, whose upper
bound and lower bound are labeled respectively by EMP-GE-CI-up and EMP-GE-CI-low.
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Similar to EMP-GE, PS-TH-GE GETH is also based on rank(kc) and can use N
generated sets where N is larger than the |L|/q independent sets available to EMP-GE.
This allows PS-TH-GE to provide much tighter confidence intervals than those of EMP-GE.
In the single-byte cases studied above, we see that PS-TH-GE does provide very accurate
GE estimation. However, PS-TH-GE becomes much more computationally intensive as
the byte number increases. In the following, we concentrate on comparing PS-TH-GE
to our GEEA. The main focus is to study when and how the PS-TH-GE also becomes
impractical due to its huge computational cost. Since PS-TH-GE can always use a larger
N value than what is available to EMP-GE, whenever PS-TH-GE is impractical, it implies
that EMP-GE should be impractical too.

As the byte number increases, the key space K grows so large that GEEA also needs
to sample M terms of f(kg). We study the computational costs and accuracies between
the sampling of rank(kc) by PS-TH-GE and sampling of f(kg) by GEEA. These studies
will show that, as the key byte number increases, only our GEEA is able to provide useful
GE assessment for the full-key case.

We first consider the computational cost comparison. In each sample, PS-TH-GE
generates the scores from multivariate Gaussian distributions and then use the ranking
algorithm to find one rank(kc). In contrast, GEEA only calculates one scaled probability
f(kg) in each sample. To simplify, we ignore the generation costs of PS-TH-GE, and
compare only the part of its computational times used by the ranking algorithm with that
used by GEEA to calculate f(kg). Here we use the ranking algorithm FSE [GGP+15]
in the PS-TH-GE implementation. In Table 1, we list the computational time for one
sample of both PS-TH-GE and GEEA when the number of bytes in the full-key ranges
from one to sixteen. Here we calculate GE by assuming all byte comparison vectors follow
the multivariate Gaussian distribution with parameters estimated in the SGII-1M data
above. The time reported is measured on High Performance Computing Cluster in our
institute, whose computing nodes have dual Intel E5 2650 CPU’s at 2.00 GHz or higher
and 128 GByte of RAM or higher.

Table 1: Computational Comparison of PS-TH-GE and GEEA
Num of Time per sample(seconds)
bytes PS-TH-GE GEEA Slowdown of PS-TH-GE
1 1.0 9.1 ∗ 103

2 1.4 1.3 ∗ 104

3 2.8 2.5 ∗ 104

4 3.4 3.1 ∗ 104

5 3.7 3.4 ∗ 104

6 4.4 4.0 ∗ 104

7 5.9 5.4 ∗ 104

8 6.7 1.1 ∗ 10−4 6.1 ∗ 104

9 7.2 6.5 ∗ 104

10 8.4 7.6 ∗ 104

11 9.7 8.9 ∗ 104

12 12.2 1.1 ∗ 105

13 14.0 1.3 ∗ 105

14 15.5 1.4 ∗ 105

15 16.7 1.5 ∗ 105

16 17.4 1.6 ∗ 105

We see that the computational time required by the ranking algorithm in PS-TH-GE
approximately linearly increases as the number of bytes increases. The computational time
for f(kg) in GEEA has no discernable increases since almost all its time is consumed by
the one evaluation of the univariate Gaussian CDF, which remains the same for all key
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length. There should be a linear increase in number of addition terms in the mean and
the variance, but the time used by simple addition is negligible compared to the Gaussian
CDF calculation.

The third column lists the ratio of the computational time for one sample in PS-TH-GE
versus GEEA. The computational advantage of GEEA grows to 105 order for the full 16
bytes key, assuming the same sampling rate M = N .

However, PS-TH-GE cannot achieve the same accuracy as GEEA when using the same
sampling rate M = N . To compare the accuracy, we evaluate the variance of the quantities
rank(kc) and f(kg), used by each method respectively. Figure 3 plots the variances of
rank(kc) and f(kg) in logarithm scale, versus the key length (from one to sixteen bytes).

Figure 3: Comparison between variance of rank(kc) and variance of f(kg).

Figure 3 shows that the variances of both rank(kc) and f(kg) grow approximately lin-
early in log scale as the number of key bytes increases, and the variance of rank(kc) is about
two order of magnitude larger than the variance of f(kg). To achieve the same accuracy
with GEEA, PS-TH-GE needs to use a sampling rate of N = M ·V ar[rank(kc)]/V ar[f(kg)].
Joined with the comparison in Table 1, we plot the ratio of computation time needed for
PS-TH-GE to achieve same accuracy as GEEA versus the key length in Figure 4. For the
same accuracy, Figure 4 shows that GEEA will be seven orders of magnitude faster than
PS-TH-GE in the full 16 bytes key case.

While the variance does provide a metric on the number of samples to get accurate
estimation, the shape of probability distribution of the quantity also can affect the accuracy.
For the same variance, a skewed distribution would require more samples to get good
mean estimation than the samples required under symmetric bell-shaped distribution. As
pointed out by [MMOS16], rank(kc) generally has a very skewed distribution. We find
that the distribution of f(kg), on the other hand, is more symmetric. To see this, we plot
the distributions of rank(kc)s and f(kg)s in Figure 6 when using q = 1000 traces to attack
the first three bytes in the SGII-1M data set.

We choose the 3-bytes key case here because the key space K is small enough to
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Figure 4: Ratio of time for PS-TH-GE and GEEA to reach the same accuracy.

Figure 6: Distributions of rank(kc)(blue) and f(kg)(orange).
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enumerate, thus giving us the exact distribution of f(kg). It is also large enough to start
showing the highly skewed distribution of rank(kc) typical in multi-byte cases. We can
see that the distribution of f(kg) is symmetric and bell shaped, while the distribution of
rank(kc) is highly skewed. Thus to arrive at the same accuracy, PS-TH-GE would need
even more than the seven order of magnitudes time indicated in Figure 4.

We now show the results of applying PS-TH-GE and GEEA for the template attack
on the full 16-bytes AES key in the SGII-1M data set. Figure 7 plots PS-TH-GE and
GEEA estimation, and corresponding 95% confidence intervals at several q values (q =
5K, 10K, 30K, 50K, 80K). For the faster GEEA, we averaged over M = 6 × 107 f(kg)s
which takes about 1.8 hours per q values. The PS-TH-GE averages over N = 2000
rank(kc)s which takes about five-fold computing time than GEEA. The narrow confidence
intervals of GEEA demonstrate that they provide accurate useful GE estimation to evaluate
the side-channel security of the device against adversaries with access to q measured traces.
In contrast, PS-TH-GE only gives useful narrow confidence intervals at two ends of the
range of q: when the attack always fails (GE ≈ 2112 when q = 5000) or always succeeds
(GE ≈ 1 when q = 80, 000). For the cases with GE ranging from 240 to 2100, the confidence
intervals of PS-TH-GE are too wide to be useful. Actually, the lower confidence bounds of
PS-TH-GE are negative and set to 0 in log-scale shown in the figure. When q = 30, 000,
the 95% confidence interval of GEEA is (265.20, 265.54). In contrast, based on the estimated
variance of rank(kc)s, for PS-TH-GE to achieve a confidence interval of one-bit length(i.e.
log2(upperbound)− log2(lowerbound) 6 1), N = 4.4 ∗ 106 samples are needed. This will
require 2.1 ∗ 104 hours of computation, far beyond our computation limit.

Figure 7: Comparison of PS-TH-GE and GEEA for full-key GE on the SGII-1M database.

4.3.1 Robutness of GEEA Estimator with respect to estimated µ̂kg and σ̂2
kg,kg

As described in Algorithm 1, the computation of our GEEA estimator uses the estimated
means µ̂mkg

and the estimated variances (σ̂mkg,kg
)2, m = 1, ..., B. Hence, for reliable GEEA
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estimator we want it to be robust to variations in µ̂mkg
and (σ̂mkg,kg

)2. For each byte, since
we are estimating 255 + 255 = 510 quantities using a number of traces (300k) that is more
than two orders of magnitude larger, we expect them to be estimated very accurately and
the resulting GEEA estimator should be reliable.

To empirically verify the robustness of GEEA estimator, we simulate sets of score
vectors of the same size as the validation data set (i.e. 300k) from multivariate Gaussian
distributions of each subkey byte. Then we re-estimate means and variances of the score
vectors on the simulated data sets, and calculate GEEA estimations accordingly. The
resulting simulated GEEA estimations are very close to the original GEEA estimation on
the SGII-1M data. Figure 8 plots five such simulated GEEA estimations together with the
confidence bounds of original GEEA estimation reproduced from Figure 7. We can see that
all simulated GEEA estimations fall well within the confidence bounds, indicating that
robustness of GEEA estimator to the variations in re-estimated means µ̂mkg

and variances
(σ̂mkg,kg

)2.

Figure 8: Comparison of Simulated GEEA estimations with confidence bounds of original
GEEA estimation on the SGII-1M data.

5 Conclusions
GE is an important metric for evaluating SCA security commonly adopted in practice.
However, it has only been widely used in evaluating attacks on single-byte subkeys, and
reliable GE estimation is often unavailable for a long key such as the full 16-byte AES key.
Since GE measures the average amount of computation that is required for a successful
SCA, it is most relevant for full-key attacks. In this paper, we propose a novel approach of
estimating GE, not through averaging ranks nor through posterior probabilities, but from
theoretical pairwise success rates. This approach produces the first reliable GE estimation
for the full AES-128 key. This enables accurate practical assessment of SCA security using
GE.
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A Appendix
In this section, we study when GM is an unbiased estimator of Guessing Entropy, for the
simple case where there are only two key candidate kg and kc. For GM calculation, we need
the posterior probabilities of the key given data, denoted as Ppost(k|L,X ). Notice that the
posterior probability is proportional to the likelihood, and we consider the score s(k) used
by the adversary as the log-likelihood of each key given data. Assuming uniform prior
distribution (no prior knowledge of key without side channel measurement), the posterior
probability for a key value is Ppost(k|L,X ) = es(k)

es(kc)+es(kg) . We consider the case where
the score vector follows a Gaussian distribution as commonly occurs with the additive
distinguishers discussed above. For such a case, we have an explicit condition of GM to be
unbiased for Guessing Entropy as stated in the following Theorem.

Theorem 2. Given two key hypotheses kg and kc, assume that the scores s(kg) and s(kc)
represent the log-likelihood of each key given data. Also we assume that the comparison
score ∆kg

= s(kg)− s(kc) follows the Gaussian distribution with mean µkg
and variance

σ2
kg,kg

. Then E(GM) = GE if and only if∫
t<0

et

1 + et
φµkg ,σkg,kg

(t)dt =
∫
t≥0

et

1 + et
φµkg ,σkg,kg

(t)dt,

where φµkg ,σkg,kg
(t) denotes the probability density function of the Gaussian distribution

with mean µkg
and variance σ2

kg,kg
.

Proof. For two keys only, the comparison vector only has one element ∆kg = s(kg)− s(kc)
as in equation (4). As in equation (7), we have

GE = E[rank(kc)] = E[1 + 1s(kg)>s(kc)] = 1 + E[1s(kg)>s(kc)] = 1 + P(∆kg
≥ 0).

(15)
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For the GM estimator, [CP17] used the i-th largest posterior probability Ppost(k|L,X )
as P[rank(kc|L,X ) = i]. Since there are only two keys, GM considers P[rank(kc|L,X ) = 1]
the same as max[Ppost(kg|L,X ),Ppost(kc|L,X )], and considers P[rank(kc|L,X ) = 2] the
same as min[Ppost(kg|L,X ),Ppost(kc|L,X )]. Since the posterior probability of kg and kc
are respectively es(kg)

es(kc)+es(kg) and es(kc)

es(kc)+es(kg) , we

E(GM)
= E{1 ∗max[Ppost(kg|L,X ),Ppost(kc|L,X )] + 2 ∗min[Ppost(kg|L,X ),Ppost(kc|L,X )]}
= E{1 ∗max[ es(kc)

es(kc)+es(kg) ,
es(kg)

es(kc)+es(kg) ] + 2 ∗min[ es(kc)

es(kc)+es(kg) ,
es(kg)

es(kc)+es(kg) ]}
= E{[ es(kc)

es(kc)+es(kg) + es(kg)

es(kc)+es(kg) ] +min[ es(kc)

es(kc)+es(kg) ,
es(kg)

es(kc)+es(kg) ]}

= E{1 +min[ 1
1+e∆kg

, e
∆kg

1+e∆kg
]}

= 1 +
∫
t∈Rmin[ 1

1+et ,
et

1+et ] ∗ p∆kg
(t)dt

= 1 +
∫
t<0

et

1+et ∗ p∆kg
(t)dt+

∫
t≥0

1
1+et ∗ p∆kg

(t)dt
= 1 +

∫
t<0

et

1+et ∗ p∆kg
(t)dt+ P(∆kg

≥ 0)−
∫
t≥0

et

1+et ∗ p∆kg
(t)dt.

(16)
Thus we have

GE − E(GM) =
∫
t≥0

et

1 + et
∗ p∆kg

(t)dt−
∫
t<0

et

1 + et
∗ p∆kg

(t)dt.

Using the fact that ∆kg follows the Gaussian distribution with mean µkg and variance
σ2
kg,kg

, we have

GE − E(GM) =
∫
t≥0

et

1+et ∗ p∆kg
(t)dt−

∫
t<0

et

1+et ∗ p∆kg
(t)dt

=
∫
t≥0

et

1+et ∗ φµkg ,σkg,kg
(t)dt−

∫
t<0

et

1+et ∗ φµkg ,σkg,kg
(t)dt

= −G(µkg , σkg,kg ).
(17)

where we denote the function

G(µ, σ) =
∫
t<0

et

1 + et
φµ,σ(t)dt−

∫
t≥0

et

1 + et
φµ,σ(t)dt

From equation (17), GE = E(GM) if and only if G(µkg
, σkg,kg

) = 0.

Given Theorem 2, we can study the bias of GM versus GE. We plotted the function
of G(µ, σ) versus the mean µ for several variance values σ2 = 1, σ2 = 4 and σ2 = 25.
As µ increases from −∞ to ∞, G(µ, σ) starts from 0 and becomes increasingly negative
before turns up and crosses zero at µ = −σ2/2, then it becomes increasingly positive and
approaches 1 in as µ→∞.

It is easy to understand the behavior when µ ≥ 0: in such cases, the SCA is using a
wrong model which prefers the wrong key kg over the correct key kc, thus the average
rank(kc) is approaching 2 as µ → ∞. However, as µ → ∞, the posterior probability
increasingly concentrate on kg as the adversarial becomes increasingly confident while
selecting the wrong key, which results in GM estimator converging to 1. Using posterior
probability as the ranking probability can not distinguish the ‘wrongly’ high confidence
from the ‘correctly’ high confidence, and will provide an underestimate for GE.

Also, this graph provides an explanation on why an agreement was observed between
E(GM) and GE on their simulations [CP17]. The posterior probability (likelihood) is an
additive score distinguisher on the trace set L = {l1, ..., lq} with ∆kg

= s(kg) − s(kc) =∑q
i=1[s(kg|li)−s(kc|li)] where the s(k|li) is the (log-likelihood) score based on only one trace

li. Let µ1 and σ2
1 denote the mean and variance of s(kg|l1)− s(kc|l1), we have µkg = qµ1

and σ2
kg,kg

= qσ2
1 . For the leakage simulated from Hamming weights plus additive Gaussian
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Figure 9: Plot of the GE-E(GM) versus mean µ for several variance values.

noise [CP17], we have µ1 = −SNR2κ(kg, kc)/2 and σ2
1 = SNR2κ(kg, kc) when ignoring

higher order terms in the formulas [FDLZ15]. Here SNR is the Signal-Noise-Ratio and
κ(kg, kc) is the confusion coefficient as defined in prior work [FDLZ15]. This means that
the condition µkg

= −σ2
kg,kg

/2 is approximately satisfied for large SNR.
Also, both µkg

= qµ1 and σ2
kg,kg

= qσ2
1 are large for large values of q. Since the valley

becomes very shallow for large σkg,kg in Figure 9, any overestimation of GE by E(GM) is
generally not observable in numerical studies. Only the underestimation of GE by E(GM)
may become obvious for the weak distinguisher when µkg

> −σ2
kg,kg

/2, as occurred in the
real data experiments of Choudary and Popescu’s work [CP17] and here in Section 4 in the
one byte key example. The simulation from a known leakage model with moderate to low
noise level leads to easy correct key distinction, and may not show observable difference
between E(GM) and GE since it falls into the left tail of the curves shown in the Figure 9.
However, for practical certification purpose, the device may already be equipped with
countermeasures and remaining leakage is weak. In such cases, the underestimation by
E(GM) prevents an accurate assessment of SCA resistance.
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