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Abstract. Several publications presented tamper-evident Physical Unclonable Func-
tions (PUFs) for secure storage of cryptographic keys and tamper-detection. Unfortu-
nately, previously published PUF-based key derivation schemes do not sufficiently
take into account the specifics of the underlying application, i.e., an attacker that
tampers with the physical parameters of the PUF outside of an idealized noise error
model. This is a notable extension of existing schemes for PUF key derivation, as
they are typically concerned about helper data leakage, i.e., by how much the PUF’s
entropy is diminished when gaining access to its helper data.
To address the specifics of tamper-evident PUFs, we formalize the aspect of tamper-
sensitivity, thereby providing a new tool to rate by how much an attacker is allowed
to tamper with the PUF. This complements existing criteria such as effective number
of secret bits for entropy and failure rate for reliability. As a result, it provides a fair
comparison among different schemes and independent of the PUF implementation, as
its unit is based on the noise standard deviation of the underlying PUF measurement.
To overcome the limitations of previous schemes, we then propose an Error-Correcting
Code (ECC) based on the Lee metric, i.e., a distance metric well-suited to describe
the distance between q-ary symbols as output from an equidistant quantization, i.e., a
higher-order alphabet PUF. This novel approach is required, as the underlying symbols’
bits are not i.i.d. which hinders applying previous state-of-the-art approaches.
We present the concept for our scheme and demonstrate its feasibility based on an
empirical PUF distribution. The benefits of our approach are an increase by over
21% in effective secret bit compared to previous approaches based on equidistant
quantization. At the same time, we improve tamper-sensitivity compared to an
equiprobable quantization while ensuring similar reliability and entropy. Hence, this
work opens up a new direction of how to interpret the PUF output and details a
practically relevant scheme outperforming all previous constructions.
Keywords: Tamper-sensitivity, Physical Unclonable Function (PUF), Fuzzy Extractor,
Information Theory, Higher-Order Alphabet PUF (HOA PUF), Lee Metric.

1 Introduction
Tamper-evident PUFs typically evaluate a physical token that obstructs physical access
to the IC [TS, EFK+, KA], the whole PCB [IOK+18, VNK+, ION+], or generic enclo-
sures [ZHS], e.g., such a token could be a protective coating or a fully-wrapped envelope
around a case containing the device. This token comprises physical parameters that are
subject to manufacturing variation and thus, can be used as a PUF, i.e., by measuring
these variations and applying suitable algorithmic processing, a cryptographic key is gen-
erated that subsequently serves as a Key-Encryption-Key (KEK) [Nat]. Once an attacker
attempts to gain access to the device, the token is partially destroyed which irreversibly
causes a change in its physical parameters, i.e., ideally the PUF is sufficiently altered
by tampering such that the key derivation fails. It is therefore of utmost importance
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to optimize this algorithmic part to separate the influence from noise from the effects
of tampering. Please note that in this scenario, the physical token is merely used to
detect tampering without the practical constraints involved when using battery-backed
tamper-detection and response mechanisms [OI].

This concept exceeds the scope of other PUFs commonly implemented in silicon, such
as the Ring Oscillator (RO) [SD] or SRAM PUF [GKST, HBF], as these PUFs lack the
property of tamper-evidence and only provide key storage that is assumed more secure
when compared to non-volatile memory, especially when the device is powered-off. In
part, this is owed to the fact that these PUFs are just a component in a larger system
and therefore their capability to obstruct physical access is severely limited. As a result,
they must still be complemented with other countermeasures such as meshes. Several
publications have practically proven that these PUFs lacking tamper-evidence can indeed
be attacked with moderate resources available in standard testing labs [HNT+, NSHB,
HBNS, TDF+, LTBS].

At their core, all PUFs are based on physical measurement data that is processed
by suitable algorithms to generate reliable keys of good cryptographic quality. Some
PUF hardware primitives are intrinsically limited to a binary-only output since they
are memory based, e.g., the SRAM [GKST, HBF] or Flip-Flop PUF [MTV]. For the
ease of implementation, others are designed to map quasi-continuous values from the
physical domain to a quantized single-bit response by means of a comparator, as it is
the case for the RO-PUF and several others. However, this discards large portions of
the information provided by the raw PUF response and does not represent a suitable
approach for tamper-evident PUFs. It was shown, e.g., for the tamper-evident Coating
PUF [TS], that a multi-bit quantization step increases the output entropy and facilitates a
first error-reduction step prior to an ECC.

Within the context of tamper-evident PUFs, the raw data as result of the measurement
is often non-uniformly distributed, e.g., in case of [TS, IOK+18] it follows a normal
distribution. This data is then subject to an error-reduction technique based on a multi-bit
quantization scheme and further processed by an ECC. As demonstrated as part of this
work, comparing the performance of the overall scheme purely based on their number
of effective secret bits and failure rate is insufficient and largely neglects the specifics
of tampering. To be more precise, while errors based on an idealized noise model are
often effectively counteracted, some of these schemes still allow values to occur that would
otherwise be considered improbable due to the chosen noise model. However, as the
physical tampering is unconstrained, altered values occur independently of the stochastic
model assumed for the noise and thus, a stricter stance must be taken to rule out such
values, too.

To address this challenge, we formalize this aspect which we call “tamper-sensitivity”
(TS). Subsequently, we rate previously suggested schemes using this notion of TS and
showcase that even more advanced ECC schemes fail to outperform a scenario purely based
on a well-chosen quantization in that regard. Afterwards, we propose our scheme based on
the Lee metric and a q-ary channel model which exceeds the scope of a large body of PUF
ECC work that with an overwhelming majority focused on Hamming distance and the
Binary Symmetric Channel (BSC) including but not limited to [JW, DRS, BGS+, YD,
Mae, H].

1.1 Contributions
In short, this work presents the following four contributions:

• A new metric by the name tamper-sensitivity that complements previous properties
of PUF-based key derivation such as entropy in effective number of secret bits and
failure probability for reliability, in particular for tamper-evident PUFs.



32 New Insights to Key Derivation for Tamper-Evident Physical Unclonable Functions

• First application of codes with Lee/Manhattan metric in the domain of PUFs,
including updated definitions of Uniqueness and Reliability, two well-known PUF
performance criteria to assess empirical PUF data.

• A fair comparison of different PUF key derivation schemes based on different quanti-
zation schemes, code constructions such as Code-Offset and Fuzzy Commitment, and
code metrics, namely Hamming, Levenshtein, and Lee with regard to aforementioned
PUF properties.

• Practical design of a new scheme and comparison to state-of-the-art approaches for
tamper-evident PUFs, showcasing a gain of over 21% in effective output secret bits
for schemes based on equidistant quantization and a drastically improved tamper-
sensitivity when compared to schemes based on equiprobable quantization.

1.2 Organization
A brief outline of our paper is as follows. Related work is discussed in Section 2 which is
followed by the formalized description of tamper-sensitivity in Section 3. Subsequently, we
introduce our own key derivation scheme in Section 4 based on Limited Magnitude Codes
(LMC) and the Lee metric. This new scheme is then evaluated in Section 5 and compared
against the state of the art. Eventually, we conclude our work in Section 6.

1.3 Notation
Unless specifically noted otherwise, random variables and their distributions are represented
by capital letters, whereas numbers and specific realizations of random variables are denoted
as small letters. Subscripts refer to indices of vectors, and superscripts show the length of
vectors (in either symbols or bit). C is the ECC and c stands for an n-bit codeword with k
information bits and p parity bits.

For the helper data W of the ECC, a quantized PUF response Y v with either super-
script v as the symbol-wise length with alphabet size q or superscript n as length in bit,
the mutual information between PUF response and helper data I(Y v;W ) measures the
information leakage. The min-entropy definition for H̃∞(Y v|W ) is given in [DRS]:

I(Y v;W ) = H(Y v)−H(Y v|W ) ≤ v · log2(q)− H̃∞(Y v|W ), (1)

H̃∞(Y v|W ) = − log2

(
E
w

[
max

yv
Pr

Y v|W
[yv|w]

])
. (2)

Throughout this paper, we make use of several distance metrics, namely: dE for Eu-
clidean distance, dLev for Levenshtein distance, dLee for Lee distance, dMan for Manhattan
distance, dH|2 for Hamming distance applied to bit strings, and dH|S for Hamming distance
applied to strings with symbols of a higher-order alphabet.

2 State of the Art
We align our work with other error-reduction and error-correction techniques for PUFs.
To do so, we briefly introduce our PUF system model in Section 2.1. Afterwards, in
Section 2.2, we discuss previous work on quantization schemes and bit mappings as means
of error-reduction prior to an ECC. Subsequently, in Section 2.3 we briefly consider common
ECC proposals for PUFs and explain why they are not suited for our setting.
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2.1 Model for Tamper-Evident PUFs
Our PUF system model is illustrated in Figure 1 and represents the practical work of, e.g.,
[TS, IOK+18, ION+] in sufficient detail to discuss their PUF key derivation specifics that
are of general nature and relevant for future proposals of tamper-evident PUFs, too. From
left to right, it comprises the tamper-evident PUF and illustrates all necessary steps to
generate a key. The upper part represents the enrollment of the PUF, i.e., the point in
time when the PUF is initialized in a secure environment and helper data is created to
enable later error correction. The lower part depicts the reconstruction in the field where
the PUF key is extracted again to serve as secret input for cryptographic applications.

Each single PUF value denoted as X is drawn from its corresponding physical PUF
node. In both [TS] and [IOK+18], the node from which X is drawn is a capacitor C that is
subject to manufacturing variation, i.e., X1 corresponds to a capacitor C1, X2 to C2, and so
on. We specifically refer to this as PUF node as opposed to bits, to point out that symbols
comprised of multiple bit per node are extracted. This underlying element of a PUF is
sometimes also called a PUF primitive and this model is not limited to a specific type of
node/primitive. X follows a quasi-continuous Probability Distribution Function (PDF) as
illustrated in Figure 2 and is the digital representation of the capacitance obtained by a
compensated1 measurement and subsequent conversion by an Analog-to-Digital Converter
(ADC). These compensating techniques, such as [TS, BNTM] depend on the specifics
of the PUF and are considered outside the scope of this work. Here, we use the term
quasi-continuous since in the actual application we do not know the real value (in the sense
of continuous) of the PUF nodes and can only practically measure it using a high-resolution
measurement circuit. Therefore, X would be typically represented by an integer with
its number of bits in binary representation equivalent to the number of bits of the ADC.
In total, there are v nodes (i.e., v distinct capacitors) in the PUF and all their values
combined are termed PUF device and written as Xv, i.e., Xv = {X1, X2, ..., Xv} with
X ∈ Z.

Noisy
PUF Values

PUF Values

Quantization
and

Bit-Mapping

Quantization
Helper Data

Encoding

ECC
Helper Data

Decoding
Quantization

and
Bit-Mapping

Xv

Noise
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Figure 1: PUF system model with enrollment and reconstruction. Y is the quantized
PUF response and Z the secret bit sequence. Added noise is denoted as (̂·).

As part of the data acquisition, the PUF values X are always affected by remaining
circuit noise N ∈ N (0, σN) during reconstruction which makes it necessary to account for
this influence by suitable mechanisms, e.g., a combination of quantization scheme and ECC.
Noise is assumed to be Gaussian following N (0, σN), i.e., it is mean free. Moreover, the
noise standard deviation σN is considered equally distributed across all PUF nodes. If the

1The term compensated measurement refers to circuit-level techniques to remove temperature and
voltage drift effects. An exemplary compensated technique is the 3-signal approach mentioned in [TS].
For other PUF designs, such as the RO-PUF, similar concepts were presented in [BNTM].
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system has not been tampered with, then the noisy PUF response is X̂v = Xv +Nv. This
noise modeling is equivalent to [TS] and also relevant for other systems, such as [ZHS].

Now, in the event of tampering with the PUF, the physical PUF nodes from which
values are drawn are additionally altered. This effect is denoted as WA ∈ Z, i.e., X̂v =
Xv +Nv +WA as indicated in Figure 1. We note that WA does not follow a stochastic
model or is otherwise formally constrained. This is owed to the fact that a designer of a
tamper-evident PUF will not know (i) which nodes will be affected by tampering, or how
many (ii) what the resulting magnitude of the attack is. Hence, regarding the magnitude
of WA, we need to implicitly assume that σN < WA which is supported by the practical
attacks in [TS, IOK+18, ION+]. With respect to the number of nodes affected, it is evident
that the best approach will enable tamper detection even in cases when only one node is
tampered with. WA is often referred to as shift, and in the noiseless but tampered case,
the Euclidean distance dE(X, X̂) is termed the tamper magnitude.

Magnitude of Noise vs. Tampering. Based on this noise model, it is evident that
instances in time may occur where N = 0 for a specific X̂ and at the same time WA ≈ σN,
i.e., tampering would go undetected as its magnitude would essentially be mistaken as
noise only. Since the noiseless scenario allows for the maximum tamper magnitude to
possibly go undetected, this is the scenario we later choose for analysis purposes, i.e., in
a real-world implementation, the undetectable tamper magnitude would be smaller as
both noise and tampering would occur at the same time. In all other cases, practically
speaking, it is similarly difficult to distinguish the noise from the effects of tampering, as an
unexpectedly large magnitude may either be the result of a relatively unlikely noise event,
or the result of tampering. Hence, the challenge is to devise a scheme that provides a clear
Tamper Detection Threshold TDT of whether the error magnitude should be treated as
noise, or as tampering, while not impeding typical PUF reliability requirements. This is
achieved by schemes where TDT = u · σN, with u being as small as possible.

Tamper detection. Here, detection of tampering is the self-determination by the
device that Zv 6= Ẑv and in that sense no different to the case when the device fails because
of insufficient reliability. The interesting result of this work is that ECC schemes effectively
working under X̂v = Xv + Nv are not automatically the same to effectively detect the
effects of WA, i.e., their TDT is sometimes worse compared to schemes providing much
less entropy. As additional constraints, we aim at schemes with superior detection of WA

while ensuring the following two requirements:

• The reliability or device failure rate, written as the mismatch probability Pe(Zv) =
Pr[Zv 6= Ẑv] shall be < 10−6 in the presence of noise (without tampering).

• The effective number of secret bits that are extracted from the tamper-evident PUF
should be sufficiently large, e.g., H̃∞(Y v|W ) > 128 bits (preferably more).

2.2 Quantization Schemes and Bit Mappings
Thus far, there are two predominant schemes to quantize normally distributed PUF data.
Both schemes are based on subdividing the quasi-continuous PDF based on the distribution
of X into intervals. In case of equiprobable quantization [TS], the intervals are chosen such
that the intervals occur with equal probability. In contrast, equidistant quantization [IHKS]
divides it into intervals of equal width. In order to decrease the probability of an erroneous
quantization value Y , an offset is stored as helper data W ∗ during enrollment that shifts
the PUF value X to the center of its corresponding quantization interval. For reasons of
clarity of explanations, we always assume that symbols of a Higher-Order Alphabet (HOA)
are assigned to these intervals as a first processing step even though this was not necessarily
included in the original publication, i.e., the PUF output alphabet L is not L = {0, 1}
but L = {a, b, c, d, . . .}, whereas |L| is the size of the alphabet which is equivalent to
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the number of quantization intervals L. Hence, this is referred to as HOA PUF. Both
quantization approaches and the assignment of symbols are sketched in Figure 2.
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Figure 2: Visualization of equiprobable and equidistant quantization schemes processing
PDF(X) which follows N (µX , σX) based on the parameters given in [TS].

Equiprobable quantization of PUF data was first introduced in [TS] for the tamper-
evident Coating PUF. As proposed in [TS], each interval is assigned a multi-bit binary
representation by means of a Gray code, i.e., neighboring intervals are designed such
that their binary representation differs by a one bit substitution error only. Hence, the
Hamming distance in binary denoted as dH|2 is 1 for directly neighboring intervals. Please
note that for this approach, both symbols and their corresponding binary bit mapping are
i.i.d. and uniformly distributed. The processed output prior to the ECC is therefore a
binary alphabet. However, for the specific scheme presented in [TS], it was later shown
that the length of each individual helper data offsets W ∗ stored for the quantization during
enrollment leaks significant amounts of information on the PUF key [IHKS]. In addition,
ensuring uniformity of bits requires precise knowledge of the underlying PUF distribution
and therefore limits the practical relevance of this scheme.

Other equiprobable quantization schemes implement a partitioning scheme to avoid
helper data leakage but again require precise knowledge of the distribution [VTO+, SAS].
Furthermore, as pointed out in [IHKS] and detailed later as part of this paper, equiprobable
quantization is ineffective to ensure good tamper-sensitivity in all scenarios due to the size
of the outermost intervals of width Qmax, as can be deduced from Figure 2b already.

Equidistant quantization apparently mitigates these effects due to the evenly sized
intervals with only minor leakage from the sign of its helper data W ∗. Moreover, a subop-
timal assignment of the interval boundaries relative to the PDF only has an insignificant
impact on the resulting entropy of the quantized output, making it a suitable approach,
e.g., for [ZHS]. However, it comes at the downside of a biased quantized PUF output,
i.e., when mapping the symbols to bits, it is evident that the individual positions of
the resulting bit string are neither i.i.d. nor uniform. As a result is any fixed-length
binary bit mapping of the symbols heavily biased. Correspondingly, when combining
equidistant quantization with a fixed-length binary output and a linear fuzzy extractor
scheme, significant amounts of secret information would be leaked by the helper data due
to the induced bias [IW, DGV+].

To overcome some of the limitations of equidistant quantization, the authors of [IHL+]
proposed a variable-length bit mapping of the symbols. Hence, as a kind of debiasing step,
they follow the information theoretic intuition of assigning shorter binary representations
to intervals that occur more often, while assigning longer bit representations to intervals
that occur less often. However, the quantized sequence comprised of the values Y is no
longer of fixed length which necessitates Varshamov-Tenengolts (VT) codes operating in
Levenshtein distance dLev, accounting not only for substitution errors but also insertions



36 New Insights to Key Derivation for Tamper-Evident Physical Unclonable Functions

and deletions [Ten, VT]. This is due to the fact that more commonly known codes such as
Bose-Chaudhuri-Hocquenghem (BCH) and Reed Solomon (RS) are not designed to work
on variable-length inputs. While VT-codes are well-suited to operate in Levenshtein metric,
their overall capability in terms of error-correction is still quite limited. The specific values
of each quantization interval are chosen such that neighboring intervals differ by dLev = 1
in [IHL+], i.e., the bit mapping of symbols to binary is similar to a Gray code such that
directly neighboring intervals differ by only one substitution or insertion/deletion error.
Again, a rather precise knowledge and symmetry of the PDF is required to ensure proper
behavior of this scheme, otherwise the debiasing properties are degraded.

As later demonstrated as part of our evaluation in Section 5, the scheme based on
equidistant quantization and VT-codes also falls short when it comes to tamper-sensitivity
when compared to a scenario only based on equidistant quantization without ECC. This is
contrary to the claims of [IHL+] and shows that formalizing the aspect of tamper-sensitivity
is indeed an important step towards developing more tailored schemes for tamper-evident
PUFs. Our scheme presented in Section 4 is based on an equidistant quantization, too.
Hence, the subsequent ECC operates on the quantized PUF output Y v which is based on
symbols with aforementioned properties. Please note that the overall setting in this work
deviates quite significantly from scenarios commonly assumed, e.g., for the SRAM PUF.

2.3 Error-Correcting Codes for PUFs
A significant amount of work was carried out in the domain of PUFs ranging from
formalizing PUFs [AMS+] to generic ECC constructions, and protocols [CBFH] in addition
to analyses in terms of implementation and information efficiency [Mae, HYP, DGV+]. As
indicated beforehand, previous work is mostly specifically tailored towards PUFs based on
a binary alphabet with only very few exceptions [IHKS, IHL+]. The strong focus on these
binary-only PUFs has been a valid requirement due to their ease of physical construction
in silicon and widespread availability. While generally being suitable to provide a sufficient
reliability even for other scenarios than their intended purpose, the shortcoming of most
ECC schemes is related to helper data leakage in W that is caused by biased PUF data
and/or insufficiencies of the ECC construction, as detailed in [IW, HPKS, DGV+]. If not
considered at all, helper data leakage is a severe security threat, as the anticipated security
level is not present in the design. If not systematically counteracted on an algorithmic level,
helper data leakage impacts the cost/size of the PUF implementation, as demonstrated for
example in [H], where – depending on the chosen ECC construction – the corresponding
PUF size would differ by a factor of ∼ 2 to achieve the same security level. Hence, the
problem of bias in PUF data and ECC helper data leakage is not completely new and
the same is true for ideas of counteracting it. Therefore, when considering new ECC
approaches for tamper-evident PUFs and higher-order alphabets, these known effects and
existing concepts must be taken sufficiently into account as done in the following.

To remove PUF induced leakage, various debiasing schemes were proposed. Index-Based
Syndrome coding (IBS) [YD] is a debiasing technique that also improves the reliability
by indexing only reliable PUF response bits. However, the symbols of an equidistant
quantization as later used in our scheme all have the same reliability such that IBS is not
applicable to the discussed scenario. Moreover, not considering certain bits of the PUF
output counteracts the idea of detecting tamper attempts.

The scheme presented in [MvdLvdSW] improves the von Neumann (VN) corrector [vN].
For i.i.d. PUF response bits (which is different to our scenario), pairs of consecutive
zeros or ones occur with different probabilities, while pairs (1,0) and (0,1) have the same
probability. However, the approach is intended for PUFs with small output alphabets.
It evaluates groups of elements that occur with the same probability but differ in their
sequence, such that an increasing number of elements decreases the probability of these
equiprobable events. In [SUHA], it was extended to ternary outputs using reliability
information. However, it cannot be efficiently applied to higher-order alphabets. The
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multi-bit symbol approach in [YHD] is especially suited for PUFs with high bit error
probabilities > 20%. It is not explicitly designed for bias reduction but can also handle
biased inputs efficiently as well. Additional recent debiasing work includes [H] where again
the PUF bits are assumed i.i.d. and coset coding is applied to mitigate the leakage. This
idea could be interpreted as combining different equidistant quantization intervals to create
a more uniform occurrence of the symbols. However, this again would contradict the idea
of tamper-sensitivity as will become evident by the remainder of the paper.

As a result, none of the discussed techniques specifically address biased symbols of a
higher-order alphabet. Hence, while they may work on such data, they are designated
to perform less efficiently when deriving the key, as supported by our later findings. To
the best of our knowledge, the case of Lee metric as distance metric for PUFs has not
been considered beforehand. Please note that we are aware of the threat of helper data
manipulation attacks [DV]. However, for the presented work, we are interested in discussing
more fundamental properties of quantization schemes and ECCs. In addition to that, we
assume that access to the helper data is also obstructed by the tamper-evident PUF, i.e.,
attempts to change the helper data would cause the partial destruction of the PUF as any
other physical access to the underlying system. An additional privacy amplification step
for the resulting output is always advised but considered out of scope.

3 Tamper-Sensitivity for PUF-based Key Derivation
To further motivate our work, let us briefly discuss an introductory example that hints
at the strong need to formalize tamper-sensitivity (TS). When comparing Figure 2a
with Figure 2b, then it is striking that the intervals for equidistant quantization are of
constant width, whereas the intervals of equiprobable quantization are of unequal width.
Consequently, when arbitrarily selecting a value X and subsequently shifting it to the
left or right (mimicking an attack), it is easy to see that the magnitude by which X
can be shifted without changing the obtained symbol varies between these two different
approaches. Clearly, the permissible magnitude of the shift without causing Zv 6= Ẑv

reflects the system’s (in)capacity to detect adversarial tampering within X̂. Therefore,
when a system provides good tamper-sensitivity, it is able to detect even the smallest
magnitude changes as a result of the tampering WA.

Here, we deliberately describe the term tamper-sensitivity informally without making
any assumptions on the processing of X̂ to include processing variants other than those
mentioned in this paper, such as [SFIC] or [G]. Furthermore, while we are of the opinion
that expressing TS in multiples of the noise standard deviation σN of the underlying
measurement circuit is a reasonable choice for the presented work, it may be too limiting
for other models or distributions w.r.t. to the noise. Depending on the type of PUF and
specifics of the key derivation scheme, TS should be analyzed for a single measured node
as TSnode or for the whole device as TSdevice. For detecting tamper attempts, the property
of TS appears to be much more important than effective number of secret bits, as later
demonstrated. Based on this generic introduction to tamper-sensitivity, we derive two
definitions to more precisely capture a system’s capability to detect the tampering WA.

Definition 1 (max-TS – Maximum Magnitude Tamper Insensitivity). Defines the maxi-
mum magnitude ofWA that goes undetected, i.e., max(WA) for which Z = Ẑ (or Zv = Ẑv)
still holds. The corresponding notation for a PUF node and device are TSmax

node and TSmax
device.

max-TS therefore is a worst-case scenario from a defender’s point of view. Hence,
max-TS should be minimized to enable better detection of an attacker regardless of the
circumstances, i.e., independent for the probability of occurrence of the affected PUF
symbols or specifics of the attack. We note that for TS on a device level, either the
accumulated per-node TS is considered, or it is normalized by the number v of nodes in
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that system to support comparisons across devices with different number of nodes, as
included in Table 2. In contrast, we define min-TS as follows:

Definition 2 (min-TS – Minimum Magnitude Tamper Sensitivity). Defines the minimum
magnitude ofWA that is detected, i.e., min(WA) for which Z 6= Ẑ (or Zv 6= Ẑv) is achieved.
The corresponding notation for a PUF node and device are TSmin

node and TSmin
device.

It therefore reflects the best-case scenario from the defender’s point of view to enable
earliest detection of an attacker. Within practical limits of applications such as [TS,
IOK+18], it is evident that a system performs best when min-TS equals max-TS and
approaches the measurement’s noise standard deviation σN, i.e., the smaller the value for
TS is, the better is the sensitivity, i.e., this is equivalent to a small TDT.

These definitions have been formulated such that a hierarchy across different PUF
key derivation schemes can be created in a meaningful way, e.g., if min-TS(Scheme1) >
max-TS(Scheme2) is given, then Scheme2 always provides a better tamper-sensitivity than
Scheme1 and thus, a better detection of attempts to physically tamper with the PUF.
Similarly to min-entropy as a worst-case scenario for entropy, we are mostly interested in
max-TS, as it represents the worst-case for the defender. Though not expressed explicitly,
preliminary ideas related to these definitions are contained in [IHKS] w.r.t. the quality of
the quantization scheme but not to the extent presented in this work.

3.1 Tamper-Sensitivity Equations of Existing Schemes
Let us put the previous definitions to practical use, survey existing schemes, and derive cor-
responding equations to describe their tamper-sensitivity more analytically. All evaluated
schemes have been targeting the scenario of the tamper-evident Coating PUF [TS]. How-
ever, specific performance numbers will only be shown later in Section 5 when compared
against our scheme that is presented in Section 4.

In the following, we refer to these schemes as profiles to have a semantic difference
between the underlying theoretical scheme and its tested instance based on specific
parameters. In total, we selected five existing profiles, whereas Profile 1,2, 3, and 4 are
based on an equidistant quantization. In case of Profile 1, only equidistant quantization
is applied without subsequent ECC. Profile 2, 3, and 4 then employ an additional ECC
after the equidistant quantization. In contrast, Profile 5 is based on an equiprobable
quantization and subsequent ECC. These profiles are further detailed hereafter and later
compared against Profile 6 which is based on our proposed solution.

TS of Profile 1 based on equidistant quantization without ECC [IHKS]: As a baseline,
we evaluate the performance of a system that only relies on equidistant quantization without
any further processing steps. Following [IHKS], the equidistant quantization is applied to
the PUF outputs X. The width Qw of the evenly sized quantization intervals is determined
by

Qw = 2 · y · σN (3)

whereas y is a parameter of choice according to the required reliability, i.e., the
Confidence Interval (CI) is [−y · σN; +y · σN]. To obtain m-bit PUF responses, PDF(X)
is divided into L = 2m intervals of the form (µX + l · Qw, µX + (l + 1) · Qw] where
l = −L/2, . . . ,−1, 0, 1, . . . , L/2. Aligning l = 0 and µX of the Gaussian distribution leads
to the highest entropy output while it is slightly decreased by misalignment depending
on the choice of y and the relative shift to µX . However, due to symmetry reasons of the
equidistant quantization this decrease is well-bounded and therefore a robust scheme.

Figure 3 illustrates the quantization intervals for m = 4 and L = 16 and an optimal
alignment. Each interval is represented by a symbol Ql in [0, L− 1]. As the compensated
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measurement of the PUF response is non-ideal, i.e., affected by noise of the measurement
process, values could move to a different interval compared to the time of enrollment.
To counteract this, the offsets between each PUF response Xi and their corresponding
interval center are stored as quantization helper data W ∗. Upon reconstruction, this offset
is applied to the noisy value X̂i to shift it towards its formerly considered interval center,
i.e., (X̂i −W ∗i ∈ Qli

→ Ŷi) for i = 1, . . . , v. The full description is included in [IHKS].

S

tamper insensitive area

tamper sensitive area

a gb c d e f h i j k l m n o p

Qw = 2yσN

Figure 3: TSmax
node of Profile 1. Any shift outside of the marked quantization interval causes

the detection of a tamper attempt which causes the device to fail (as desired).

When assessing this profile with respect to its tamper-sensitivity, it is best to start with
TSmax

node and visualize its properties as done in Figure 3. Assuming a symbol S at a specific
location of the range of values, it is evident that by exceeding its designated quantization
interval limits, an erroneous symbol is obtained. The difference between TSmax

node(P1) and
TSmin

node(P1) is therefore only rooted in a small ε that represents the smallest possible
resolution step of the underlying measurement circuit. For TSmax

device(P1), the accumulated
tampering that goes undetected on a device-level is therefore the result of TSmax

node(P1) times
the number of nodes v in the system. In contrast, TSmin

device(P1) is limited by TSmin
node(P1),

i.e., a single erroneous node allows detection of physical tampering. The resulting equations
are therefore:

TSmax
node(P1) = Qw/2 = y · σN TSmax

device(P1) = v · TSmax
node(P1) (4)

TSmin
node(P1) = TSmax

node(P1) + ε TSmin
device(P1) = TSmin

node(P1) (5)

TS of Profile 2 based on Fuzzy Commitment and RS codes [JW, HPKS, IHL+]: Fuzzy
commitment is a well-investigated scheme for PUFs and therefore should be considered
within the context of this work, too. While the choice of ECC operating on a higher-order
alphabet is not limited to RS codes, we chose them to replicate the results of [IHL+]. The
basic idea when combining equidistant quantization with an additional ECC is that by
making y of Qw smaller, more entropy can be extracted from the PDF which however does
not take into account yet the effects of secrecy leakage by the helper data. At the same
time when making y smaller, the failure probability increases and must be counteracted
by an ECC which is designated to provide a more flexible approach of counteracting errors
when compared to a quantization scheme alone.

Here, we make use of a symbol-based RS code with parameters RS(n, t), i.e., n as block
length in symbols and t as errors to be corrected. RS codes belong to a class of codes called
Linear Block Codes. They are represented as RS(n, k), where k is the number of message
symbols and n the block length. A primitive RS Code is defined by a k × n generator
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matrix GRS as given in Equation (6). RS Codes are Maximum Distance Seperable (MDS),
which makes dH|S(RS(n, k)) = d = n− k + 1 . Hence they can detect and correct up to
d− 1 errors and t = b(d− 1)/2c errors respectively.

GRS =


1 1 1 · · · 1
1 α α2 · · · αn−1

...
...

...
. . .

...
1 αk−1 α2·(k−1) · · · α(n−1)·(k−1)

 (6)

where α ∈ GF(2m). The ECC input symbols Y are assumed to be of size q = |L| and
their distance is rated by the Hamming distance dH|S which states that any substitution
error between dH|S(Y v, Ŷ v) and their symbols, regardless of their actual distance in the
underlying domain of X, is counted as dH|S(Y, Ŷ ) = 1. As an example, (Y, Ŷ ) = (a, p)
yields dH|S = 1 as shown in Figure 4.

Hence, the scheme operates independently from the actual binary representation of
the symbols similar to Profile 1. Consequently, when considering TSmax

node(P2), the largest
magnitude of WA without causing detection may span from the very left to the very right
side of the range of values. This corresponds to q · Qw for TSmax

node(P2) and indicates already
that the detection of WA is rather limited when compared to Profile 1.

S

tamper insensitive area

a gb c d e f h i j k l m n o p

Figure 4: TSmax
node of Profile 2. Based on a single value X of a node, it is not possible

to detect tampering, since any magnitude changes result in dH|S(Y, Ŷ ) = 1 due to how
Hamming distance is defined for strings of higher-order alphabets.

Since the number of nodes v and symbols derived thereof may not necessarily be
equal to the ECC’s block length n, it must be divided by a number of segments z for
separate processing. This is often owed to the fact that codes with substantial block
length are often impractical to implement, especially in hardware implementations. The
equation describing TSmax

device(P2) therefore covers the tampering corrected by the code in
its first summand and the remaining tampering that goes undetected by the quantization is
contained in the second summand. For TSmin

node(P2), tampering cannot be detected within
a single node for as long as the error threshold t has not been exceeded. To properly
define TSmin

device(P2), we therefore take into account the first summand of TSmax
device(P2) but

then only add TSmin
node(P1) causing the minimum error to just exceed the scope of the

quantization scheme. The resulting equations for TS of P2 are:

TSmax
node(P2) = L ·Qw TSmax

device(P2) = z tTSmax
node(P2) + (v − z t) · TSmax

node(P1) (7)
TSmin

node(P2) =∞ TSmin
device(P2) = z tTSmax

node(P2) + TSmin
node(P1) (8)
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TS of Profile 3 based on Code-Offset and BCH codes [DRS]: Another well-investigated
scheme for PUFs is the Code-Offset method. Similar to Profile 2, equidistant quantization
is applied. However, this time, the resulting symbols are mapped to bits using a Gray
code, i.e., the binary representation of neighboring quantization intervals differs by a
hamming distance of 1 only, as it was done also in [TS] for equiprobable quantization, as
later considered in Profile 5. After this bit mapping to Gray coded symbols, a BCH code
is applied. BCH codes can also be described as binary RS codes, i.e., they are represented
as BCH[n, k, d]GF(2m). Correspondingly, the distance between codewords is counted by
the Hamming distance dH|2.

tamper insensitive area

tamper sensitive area

S

a gb c d e f h i j k l m n o p

Qw = 2yσN

Figure 5: TSmax
node of Profile 3. Please note that for Gray encoded symbols, the resulting

distance dH|2(a, p) = 1, due to how a Gray code is typically constructed.

The basic idea of this scheme is as follows: Errors close to the designated value result
in a small Hamming distance, while a larger shift will increase the Hamming distance. We
observe that L = 2m, i.e., m as number of bits to encode the intervals. Since m < L, it
follows that there exists only one case of the codebook where dH|2 per node is maximized,
i.e., dH|2(Y, Ŷ ) = m. This is the case when the all null bit sequence derived from a node is
flipped to the all one bit sequence. In all other cases, dH|2(Y, Ŷ ) ≤ m− 1 which degrades
the tamper-sensitivity of the device. Even worse, some very extreme magnitude shifts may
result in only dH|2(Y, Ŷ ) = 1 due to how a Gray code is constructed. For the example given
in Figure 5, when assuming a Gray code as follows: (a← 0000), (b← 0001), (c← 0011),
. . . , (p← 1000), then the largest possible shift while ensuring a Hamming distance of 1 is
from the symbol a to the symbol p. Correspondingly, max-TS for this profile results in

TSmax
node(P3) = L ·Qw

TSmax
device(P3) = z tTSmax

node(P3) + (v − z t) · TSmax
node(P1)

(9)

To write a closed form of TSmin
node(P3) and TSmin

device(P3), we assume that the attacker
can divide and distribute WA such that indeed only the smallest detectable change in dH|2
per node occurs. For equiprobable quantization this is a symbol residing in any interval
with width Qw and shifting to its directly neighboring intervals, thereby causing a single
bit substitution error. When t > 1 the ECC is capable of correcting more bits, then
multiple nodes with a single bit error within a segment z could be corrected, or larger
magnitude shifts within a node (which is not desired with regard to tamper-sensitivity).
However, to adhere to the definition of min-TS, we assume that for larger t, indeed t-times
the smallest detectable change occured. The resulting equations are therefore:
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TSmin
node(P3) = 3 ·Qw/2 + ε iff t = 1

TSmin
device(P3) = z tTSmin

node(P3) + TSmin
node(P1)

(10)

TS of Profile 4 based on VT-like codes [IHL+]: This profile again is based on an
equidistant quantization but this time with a variable-length mapping of the symbols Y to
bits, as described in [IHL+]. The corresponding code is a VT-like code denoted as VT(·, t)
with t as number of errors in dLev. Due to the limitations of VT-codes, t = 1 always,
as multiple insertion/deletion errors can only be corrected when considering multiple
segments z.

VT-like codes are designed using Levenstein Distance metric. Each derived symbol
Y corresponding to a quantization interval is bit mapped to a variable number of bits.
Since these bit maps should be uniquely decodable, they are generated using a binary tree,
while ensuring dLev= 1 between neighboring intervals. For a PUF device with v nodes, z
number of VT-like code segments can be generated. Since each segment can correct only
1 symbol error, the total number of correctable symbol errors is z. The systematic code
construction is described in Equation (11) following the notation of [IHL+].

CVT :=
{

(b1, b2, ..., bm, p1, ..., pr) :
m∑

i=1
i · bi +

r∑
j=1

2j−1 · pj ≡ 0 (mod 2m+ 1)
}

(11)

P = 2m+ 1−
( m∑

i=1
i · bi (mod 2m+ 1)

)
(12)

where (b1, b2, ..., bm) is the bit map of (y1, y2, ..., yv/z) PUF nodes and (p1, ..., pr) is the
binary representation of P given by Equation (12).

tamper insensitive area

tamper sensitive areaS

a gb c d e f h i j k l m n o p

Qw = 2yσN

Figure 6: TSmin
node of Profile 4.

When analyzing the tamper-sensitivity of this profile, it is evident that writing a
closed form for TSmax

node(P4) and TSmax
device(P4) is difficult, as it depends on the number of

quantization intervals and the codebook used to create the variable-length bit mapping2.
This statement is based on the observation that dLev(Y, Ŷ ) = 1 is ensured for directly
neighboring intervals but larger magnitude changes may still result in distance dLev = 1,
i.e., the attacker may be even encouraged to cause larger magnitude changes that would
still be accounted for by the error-correcting capability of the code. We therefore directly

2For the specific case later considered: TSmax
node(P 4) = 6 · Qw + Qw/2 for 12 intervals; TSmax

node(P 4) =
10·Qw+Qw/2 for 14 intervals; and on a device-level: TSmax

device(P 4) = z t·TSmax
node(P 4)+(v−z t)·TSmax

node(P 1)
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compute max-TS values for the parameters later considered by using the codebooks
provided by the authors of [IHL+] (cf. Appendix A). In contrast, stating min-TS equations
is straightforward and visualized in Figure 6. The corresponding equations are

TSmin
node(P4) = 3Qw/2 + ε TSmin

device(P4) = TSmin
node(P4) (13)

owed to the fact that the minimum error to detect is the one just exceeding the error-
correcting capability of the VT-like code. Similarly to Profile 1, the overall TSmin

device(P4) is
again the same as TSmin

node(P4), i.e., a single erroneous node triggers the tamper-detection
which is a beneficial behavior for improved tamper-sensitivity.

TS of Profile 5 based on Equiprobable Quantization and BCH-based Code-Offset [TS]:
Unlike before, we make use of an equiprobable quantization and refer to [TS] for its formal
description. As illustrated in Figure 2b, this approach is characterized by its innermost
intervals of width Qmin and outermost intervals of width Qmax. As described in Section 2.2,
the symbols are mapped to a binary representation using a Gray code. A BCH(n, t) code
is applied to the resulting output, whereas both n and t are in bits.

One of the challenges for this profile is defining the outermost intervals properly when
considering a practical implementation, as equal probability of intervals needs to be ensured
also for the outermost intervals that are however limited by the measurement range of
the underlying implementation. Values outside of the measurement range cannot be used
for tamper-detection. Excluding values with probability of occurrence < 0.1% per node
balances the engineering effort for the measurement circuit with the expected excess during
production, assuming that devices with values outside of the measurement range are
discarded. Hence, at some point in the range of X, the tails of the PDF need to be cut off.
If this would not be done, then tamper-sensitivity would not be bounded in the outermost
intervals of the equiprobable quantization. This would no longer represent the targeted
practical scenario and thus, result in an unfair comparison that we want to avoid. The
same has been done in [IHKS] or [WHGS].

p(X ) < 0.1% p(X ) < 0.1%a gb c d e f h

S

tamper insensitive area
tamper sensitive area

Figure 7: TSmax
node of Profile 5 for the symbol S as indicated. Based on the Gray code bit

mapping as illustrated in Figure 2b and as further detailed in Appendix A.

Regarding the tamper-sensitivity of this profile, we observe similarly to P3 that the
specifics of the Gray code significantly affect the tamper-sensitivity. For example, for the
scenario presented in [TS], a shift from the left outermost interval to the right would only
result in distance 1, as illustrated in Figure 7 when assuming the bit mapping of Figure 2b.
max-TS for this profile therefore results in
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TSmax
node(P5) =

L∑
i=1

width(Qi)

TSmax
device(P5) = z tTSmax

node(P5) + (v − z t) ·Qmax/2

(14)

To write a closed form of TSmin
node(P5) and TSmin

device(P5), we again assume that the
attacker can divide and distribute WA such that indeed only the smallest detectable
change in dH|2 per node occurs. For equiprobable quantization this is a symbol residing in
Qmin and shifting to its neighboring intervals. When t > 1, then multiple nodes could be
corrected or larger magnitude shifts within a node. To adhere to the definition of min-TS,
we assume that for larger t, indeed t-times the smallest detectable change occured. The
resulting equations are therefore:

TSmin
node(P5) = 3 ·Qmin/2 + ε iff t = 1

TSmin
device(P5) = z tTSmin

node(P5) +Qmin/2 + ε
(15)

Regarding the fairness of comparison and the design trade-off made w.r.t. Qmax, i.e.,
where to cut off the range of values, we point out that by defining min-TS as given, it
is independent from the size of the outermost interval. Hence, it only affects max-TS
whereas excluding more values would make Qmax smaller but increase excess during the
manufacturing process, thereby reducing the yield.

3.2 Discussion and Comments Regarding Tamper-Sensitivity
All presented TS equations have in common that they describe a noise-free scenario, as
motivated in Section 2.1 for analysis purposes only. This simplifies the equations without
affecting their accuracy in describing the fundamental TS property of the scheme. Moreover,
we neglect the challenges that arise when trying to define TS for the outermost intervals of
a specific profile, i.e., independent of the actual measurement range of the PDF that could
be covered and the number of quantization intervals to sample it. We assume that TS is
not affected by these practical constraints and instead is purely based on the properties of
the underlying scheme.

We also note that excluding values with probability less than 0.1% per node for Profile 5
would result in a yield reduction of 12% overall for a device with 128 nodes. If in contrast
less values would be excluded to improve the yield, then at the same time TS in the
outermost intervals would be degraded. Since we primarily evaluate TS, we deliberately
chose a poor yield as this improves tamper-sensitivity in the outermost interval. We
emphasize for Profiles 1,2,3, and 4 that choosing the cut-off for equidistant quantization
does not change the tamper-sensitivity behavior in the outermost intervals, as they are
always of a fixed width (later, the same applies to Profile 6). Since working with min-
entropy, changing the number of equidistant quantization intervals while keeping their
width constant does not increase the extracted entropy. In general, for analysis of the
conceptual schemes only, we suppose that the range of the measurement circuit is not
bounded. In a practical setting, both enrollment and reconstruction would be done with
a measurement circuit that provides a bounded range. However, since the anticipated
yield reduction is independent from the TS properties in case of equidistant quantization,
and also heavily depends on the manufacturers business model, i.e., factors outside of the
technical scope of this paper, we do not further take this aspect into account.

We point out that our definition of TS assumes unidirectional shifts, i.e., a change
in value cannot be in both directions at the same time. This is of particular relevance
for Profile 3, 4, and 5, where a shift may move values over intervals that are considered
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tamper-sensitive. Hence, not the tamper-sensitive area of a PDF is taken into account but
indeed the magnitude of the shifts only. Since Profile 5 deviates already at the point of
quantization from the other profiles, neither TSmin

node nor TSmax
node will reflect the perceived

tamper-sensitivity in a practical setting as it will be based on the average tamper-sensitivity
that takes into account the probability of occurrence of an affected quantization interval,
i.e., it would be necessary to weigh the tamper-sensitivity per interval by its probability
of occurrence. However, min-TS and max-TS already provide a quality assessment to
sufficiently compare Profile 5 against the other profiles.

As can be derived from the given equations, all schemes behave differently when
considering TSmax

node and TSmax
device. This already supports the argument that a property is

being addressed that otherwise cannot be captured by entropy or failure rate. Please note
that while some of the given equations appear highly similar, e.g., TSmin

node of Profiles 1, 3,
4, and 5, their actual value will still be different when considered under a specific set of
parameters. The interested reader may already proceed to Table 2 to see the resulting
numbers for the tested profiles. Correspondingly will the visual appearance of the presented
Figures for the actual parameters be different, e.g., smaller but more intervals.

Late Tamper Evaluation. Our work focuses on improving the combination of
quantization and ECC without additional processing steps. Alternatively, it may be
possible for some profiles to further improve tamper detection by studying the magnitude
of errors after successful decoding was done, i.e., by computing the Euclidian distance
dE(Ẑ, X̂) and validating that the result is of a reasonable magnitude, e.g., by requiring
dE(Ẑ, X̂) ≤ TDT, e.g., TDT = 3 · Qw/2 = 3 · y · σN for Profile 4. By following this
approach for Profile 4, it is possible to limit the error magnitude to TSmin

node(Profile 4).
This is possible since only one error per segment z is covered by the scheme. For other
Profiles though, such as Profile 3 and Profile 5, this quickly leads to inconsistencies in
how errors are treated. This argument is based on the observation that within a block of
length n (in bits), up to t errors (in bits) are corrected. Assuming that m bits per node
are derived and t > m (which is the case for the practical scenarios considered), then it is
becoming increasingly difficult to formulate a valid late tamper evaluation approach, since
the late tamper evaluation will impede with how the ECC operates. Hence, even if such
an approach can be successfully applied to any of the existing profiles, the obtained result
will still not exceed the min-TS level due to how it has been defined. This is in addition
to the potential security threat of first reconstructing the valid secret, before discarding it
based on the result of the late tamper evaluation. To the best of the author’s knowledge,
there are no other publications discussing the specifics of such a late tamper evaluation.

In the next Section, we present our approach based on Limited Magnitude Codes
(LMC) in combination with equidistant quantization which is then named Profile 6 as
part of the comparison. This enables TSmin

node to be equal to TSmax
node and TSmin

device, as it
is the case for Profile 1 but at the same time, be almost twice as tamper-sensitive on a
device-level in addition to extracting more entropy.

4 Limited Magnitude Codes (LMC)
As indicated by our analysis of the previous work, specifically of Profile 3, 4 and 5,
mapping higher-order alphabet symbols to an alphabet of lower degree diminishes tamper-
sensitivity by causing an unevenly spread TS in the codebook. However, also building
upon inappropriate distance metrics such as Hamming distance over symbols, as done in
Profile 2, degrades tamper-sensitivity, as the distance dE(X, X̂) is not well reflected by
dH|S(Y, Ŷ ). To solve these problems, we model the outcome of the equidistant quantization
as a q-ary channel as depicted in Figure 8b, i.e., we continue operating on the symbols
directly. In contrast to previous works, we rate errors in this channel by the Lee metric dLee,
i.e., symbols of neighboring intervals will have a distance of 1 whereas symbols of larger
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distance l will have distance l. This is also called the magnitude. Different possible types
of magnitude errors are illustrated in Figure 8a. These are classified as asymmetric when
unidirectional, symmetric when of equal magnitude in either direction, or bidirectional
when in either direction but of unequal magnitude.

0 1 2 3 54
lu

Asymmetric

Symmetric

Bidirectional

luld
0 1 2 3 54

0 1 2 3 54
ld lu

(a) LMC error types for
q = 5 and the designated
symbol 2.

1

0

q − 2

q − 1

1

0

q − 2

q − 1
(b) q-ary asymmetric channel model for l = 1 between symbols.
Non-wrap around channel (solid lines only) and wrap-around
channel (solid lines and dashed line as wrap-around).

Figure 8: LMC error types and q-ary channel model.

Elarief et al. [EB] first proposed a code to correct all asymmetric and symmetric errors
of limited magnitude in a q-ary channel. While the code proposed by [EB] corrects all
magnitude errors, it does not allow to limit the number of magnitude errors corrected
by the ECC which is the necessary degree of design freedom we need. To mitigate this
shortcoming, Myeongwoon et al. [JL] proposed a modified version of this code called
Limited-Magnitude Error Correction Code (LMC). This is based on an RS Encode/Decode
step that is additionally introduced to limit the number of correctable errors as later
described. Hence, this can be considered as a concatenated code construction of LMC and
RS codes, whereas we are not limited to RS codes but could have selected any other code
operating on higher-order alphabet symbols. Although the new code by [JL] was intended
for bidirectional errors, it is equally applicable to asymmetric and symmetric errors.

The error correction capability of these codes is as follows (cf. Figure 8a): In Asymmetric
LMC (A-LMC), a symbol is correctable if the possible error occurs in only one direction.
For example, if the symbol is 2 then in A-LMC (lu = 1) the symbol is corrected only if it
changes to 3 (error = +1). If the symbol changes to any other value, it is not corrected.
Similarly for Symmetric LMC (S-LMC), the error magnitude can be ±1 i.e. lu = |ld| = 1.
This implies that even if symbol 2 becomes 1, it is corrected. Bidirectional LMC (B-LMC)
is a generic case of S-LMC where |lu| 6= |ld|.

These error types can be considered within the scope of two different q-ary channel
models. They are called wrap-around and non-wrap-around channel. In Figure 8b the
wrap-around is indicated by a dashed line, whereas all other lines are solid and represent
the only valid transitions for the non-wrap-around channel. Hence, for the wrap-around
channel, dLee(q− 1, 0) = 1, whereas for the non-wrap-around channel dLee(q− 1, 0) = q− 1.
Since the underlying application is based on a physical measurement process, the wrap-
around is not desirable and counteracts the aspect of tamper-sensitivity. Therefore, to
minimize TSmax

node and best reflect dE(X, X̂) in the quantized symbols Ŷ v, we only make use
of the non-wrap-around channel model. The Lee metric in the non-wrap around channel is
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sometimes also termed Manhattan distance dMan.
For encoding and decoding, the corresponding steps are listed in Algorithm 1 and

Algorithm 2 that are described by [JL]. The parameters of an LMC are q′, q, p and t. q′
represents the number of values a symbol can take under the influence of an error, while
still being within the LMC boundary. q represents the number of quantization intervals. p
is the RS code field size GF(p) and t is the error correction capability of RS code. While
constructing any LMC, Equation (16) must always hold.

q′ = lu + |ld|+ 1 and q′ ≤ q ≤ p (16)

The encoding and decoding algorithm is complemented by Algorithm 3 which is
instantiated by both LMC Encode and Decode and helps translating an array of elements
from one base to another, especially for the description presented here, assuming that q′ is
a power of 2, allowing for a very efficient implemenation as demonstrated by the examples
in the appendix.

Algorithm 1: LMC Encode
Data: Y = [y1, y2, ....yv] ∈ [0, q − 1]
Result: Z = [z1, z2, ....zv] ∈ [0, q − 1], W
/* Step 1: Calculate remainder of Y

q′ */
1 η = Y (mod q′)

/* Step 2: Generate p-ary message symbols using η and encode it
using RS(n,t) encoder. */

2 ηp = baseChange(η, q′, p)
3 C = RSEnc(ηp, n, t)

/* Step 3: Convert 2t p-ary parity symbols to q-ary symbols */
4 W = baseChange(C[n− 2t+ 1 : n], p, q)

/* Step 4: Set output Z */
5 Z = Y

The algorithms for encoding and deconding can be used for A-LMC and S-LMC as
well, by changing q′ as in Equation (17). If we correct t times a p-ary error, then the
maximum number of q′-ary errors potentially corrected by LMC is given by tmax as defined
in Equation 18. Since the minimum number of errors corrected is t, we use t as the number
of errors corrected by LMC for notation purposes and also computation of the reliability.
However, for max-TS, we indeed use tmax. This could be even further improved by making
use of the early decoding termination, as introduced in the subsequent paragraph.

q′ =


lu + |ld|+ 1, B-LMC
2lu + 1, S-LMC
lu + 1, A-LMC

(17)

tmax = t · log2(p)
log2(q′) (18)

Early Decoding Termination: We introduce an additional check on the number of non-
zero elements in ε′′ to limit the maximum number of q′-ary errors that get corrected.
If the number exceeds the chosen threshold t, then a decoding failure can be triggered.
(cf. lines 13 to 16 of Algorithm 2). Once a decoding error occurs, the device should
enter a permanent failure mode from which recovery is difficult, e.g., by blowing fuses or
zeroization of helper data. This is required to not introduce an obvious timing side-channel
in the decoding process and is within the principles of tamper-detection and response.
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Algorithm 2: LMC Decode
Data: Ŷ = [ŷ1, ŷ2, ....ŷv] ∈ [0, q − 1],W, e ∈ {TRUE,FALSE}
Result: Ẑ = [ẑ1, ẑ2, ....ẑv] ∈ [0, q − 1]
/* Step 1: Calculate remainder of Ŷ

q′ */

1 ϕ = Ŷ (mod q′)
/* Step 2: Convert ϕ and W to p-ary and form a codeword. */

2 ϕp = baseChange(ϕ, q′, p)
3 P = baseChange(W, q, p)
4 C ′ = [ϕp ||P ]

/* Step 3: Correct the codeword using RS(n,t) decoder. */
5 Ĉ = RSDec(C ′, n, t)

/* Step 4: Convert the message part of Ĉ to q′-ary and estimate the
error */

6 ϕ′ = baseChange(Ĉ[1 : n− 2t], p, q′)
7 ε′ = ϕ− ϕ′ = [ε1′, ε2′...εv′]

/* Step 5: Refine error to lie in [ld lu] bound */
8 for i← 1 to v do
9 if ε′i < ld then

10 ε′′i = ε′i + q′
11 else if ε′(i) > lu then
12 ε′′i = ε′i − q′
13 if ε′′i 6= 0 then
14 count = count + 1 // required only for Early Termination

/* Optional: Early Decoding Termination */
15 if e == TRUE & count > t then
16 return

/* Step 6: Subtract ε′′ from Ŷ to get the corrected output */
17 Ẑ = Ŷ − ε′′

Algorithm 3: LMC baseChange
Data: DIn = [d1, d2, ....dn], baseIn, baseOut
Result: DOut = [d1, d2, ....dm]

1 baseInBits = dlog2(baseIn)e
2 baseOutBits = dlog2(baseOut)e

/* Step 1: Represent each array element of DIn in binary using
dec2bin() */

3 for i← 1 to n do
4 Db[i · baseInBits : (i+ 1) · baseInBits] = dec2bin(DIn[i],baseInBits)

/* Step 2: Estimate number of elements in DOut */
5 m = dn · baseInBits/baseOutBitse

/* Step 3: Combine each baseOutBits elements of Db to form one
symbol using bin2dec() */

6 for i← 1 to m do
7 DOut[i] = bin2dec(Db[i · baseOutBits : (i+ 1) · baseOutBits],baseOutBits)
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Secrecy Leakage by Helper Data: The leakage caused by LMC helper data W is upper
bounded using Equation 19, since it is essentially a Code-Offset construction where only
the parity is stored. Here, P = z ·2 t · log2(p) is the total number of parity bits P generated
for z segments of LMCs, based on the RS code operating in the p-ary domain.

I(Xv;W ) = dP e = dz · 2 t · log2(p)e bit (19)

The leakage calculation for the first entry of Profile 6 in Table 1 is provided as an
example in the following. First, we compute the secrecy leakage.

I(Xv;W ) = dz · 2 t · log2(p)e = d1 · 2 · 10 · log2(64)e = 120 bit

Concerning the min-entropy that is extracted on average from a device, we consider
each node with parameter y = 2.1 for the equidistant quantization which leads to a
min-entropy H̃∞(Y ) of 3.4325 bit per node, resulting in an overall min-entropy for a device
H̃∞(Y v) with v = 128 nodes of

H̃∞(Y v) = v · H̃∞(Y ) = 3.4325 · 128 = 439.36 bit

Hence, the effective number of secret bit, i.e., when accounting for the previously
computed helper data leakage, is

Heff
∞ = H̃∞(Y v)− I(Y v;W ) = 439.36− 120 ≈ 319 bit

Failure Probability Computation: Based on the presented LMC properties, decoding
fails if one of the following conditions is met:

1. The magnitude of error ε exceeds [ld lu] of the LMC

2. The number of p-ary errors is greater than t, i.e., too many magnitude errors in total

To provide a generic description of the failure probability, let r parts constitute a
symbol, i.e., the number of unique digits to represent the symbol (radix). Let Ppart be the
error probability of one part and the symbol error probability be Psymb. Then the error
probability of a symbol is computed as

Psymb(r,Ppart) =
i=r∑
i=1

(
r

i

)
· Ppart

i · (1− Ppart)r−i (20)

We know that

Psymb +
(
r

0

)
· Ppart

0 · (1− Ppart)r−0 = 1

Psymb + (1− Ppart)r = 1
=⇒ Ppart(r,Psymb) = 1− (1− Psymb)1/r

(21)

If the incorporated ECC corrects up to t errors then error probability after ECC is
given by Equation (22). Where P = Psymb for RS code and P = Pbit for BCH code. Pe is
the error probability of one block of RS/BCH code.

Pe(n, t,P) =
i=n∑

i=t+1

(
n

i

)
· Pi · (1− P)n−i (22)

For the error probability calculation of LMC, we assume that after LMC decode, the q-ary
symbol error probability (Pe(Zv)) depends only on q′-ary errors. The errors of magnitude
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> q′ are not used in the calculation since this is considered as tampering. Based on
the previous equations, Algorithm 4 provides the approach on how to compute the error
probabilities. Please note that it provides an upper bound for the failure probability for
LMC cases where log2(q)/ log2(q′) and log2(p)/log2(q′) are not integers. The resulting
performance numbers for the considered parameters are presented in Table 1, alongside all
other profiles. In the following, the tamper-sensitivity of LMC is analyzed.
Algorithm 4: LMC Error Probability
Data: Pe(Y), q′, q, p, z
Result: Pe(Zv)
// Step 1: Calculate q′-ary symbol error probability before RS

Decoder using Equation (21)
1 Pq′_symb = Ppart(dlog2(q)/ log2(q′)e,Pe(Y))

// Step 2: Calculate p-ary symbol error probability before RS
Decoder using Equation (20)

2 Pp_symb = Psymb(dlog2(p)/ log2(q′)e,Pq′_symb)
// Step 3: Calculate p-ary block error probability after RS Decoder

using Equation (22)
3 Pe_block_rs = Pe(n, t,Pp_symb)

// Step 4: Calculate p-ary symbol error probability after RS Decoder
using Equation (21)

4 Pp_symb_rs = Ppart(n,Pe_block_rs)
/* Step 5: Calculate q′-ary symbol error probability after LMC

Decoder using Equation (21) */
5 Pe(Z) = Ppart(dlog2(p)/ log2(q′)e,Pp_symb_rs)

/* Step 6: Calculate q-ary block error probability after LMC Decoder
using Equation (20). Note, there are dk · log2(p)/ log2(q′)e q-ary
symbols in 1 block of LMC */

6 Pe(Zz) = Psymb(dk · log2(p)/ log2(q′)e,Pe(Z))
/* Step 7: Calculate q-ary device error probability after LMC

Decoder using Equation (20). There are z blocks of LMC per device.
*/

7 Pe(Zv) = Psymb(z,Pe(Zz))

TS of Profile 6 based on Equidistant Quantization and LMC: Following the previous
description, LMC corrects t errors within the [ld lu] boundary. Hence TSmax

node(P6) is
defined using Equation 23. Its first summand is based on the error correction capability
of the LMC and the second summand caused by the equidistant quantization. Hence, to
cause detection, an additional ε is required for TSmin

node(P6). Since LMC decoding fails
even if the number of errors is less than t but the magnitude exceeds [ld lu], TSmin

device(P6)
is equivalent TSmin

node(P6). This already indicates a significant advantage over the other
profiles discussed earlier. Calculating TSmax

device(P6) then follows similar principles of the
other ECC-based profiles, i.e., if the block length n does not match the input length of
symbols v, then multiple segments z must be created.

TSmax
node(P6) = max(lu, |ld|) ·Qw + TSmax

node(P1) (23)
TSmax

device(P6) = z tmax · TSmax
node(P6) + (v − z tmax) · TSmax

node(P1) (24)

TSmin
node(P6) = min(lu, |ld|) ·Qw + TSmin

node(P1) (25)
TSmin

device(P6) = TSmin
node(P6) (26)
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tamper insensitive area

tamper sensitive areaS

a gb c d e f h i j k l m n o p

Qw = 2yσN

ld lu

Figure 9: TSmax
node of Profile 6. Please note the difference to Figure 6 where TSmin

node(P4) is
illustrated, i.e., here we illustrate max-TS per node as opposed to min-TS in Figure 6.

5 Evaluation of Key Derivation Profiles
In this section we discuss the results listed in Table 1 and Table 2 (cf. Appendix B). All
former profiles have been tested based on the empirical data of [TS]. The corresponding
parameters are: µX = 1.8 · 10−13 and σX = 3.6 · 10−15. Individual measurements of the
nodes are affected by Gaussian distributed, mean-free noise with σN = 2 · 10−16.

Starting with Profile 1 in Table 1, it can be seen that even a basic equidistant quanti-
zation scheme without subsequent ECC is sufficient to create a workable solution. This is
achieved by values y of 5.4 or larger, i.e., the width of the quantization intervals needs to be
relatively large to account for the assumed noise. We note that the extracted min-entropy
is only determined by the innermost intervals closest to µX , i.e., an increasing number of
quantization intervals does not increase the min-entropy. The extracted entropy ranges in
between 267 bits and 231 bits for a reliability in the range of 10−6 to 10−9. As described
by Equation 4, TSmax

node(P1) is equivalent to y · σN, whereas TSmax
device(P1) simply scales this

number by the number of nodes v in the system. The corresponding numbers for Profile 1
with the best max-TS are therefore 5.4 on a node-level and 692 on a device-level. If we
would be considering an increasing number of nodes beyond v = 128, it is clear that the
increasing numbers of nodes in the exponent of the error probability computation demand
an over-excessively wide quantization interval to be counteracted. Hence, this cannot be
considered a flexible engineering solution and should only be considered as a baseline for
subsequent comparisons. For all subsequent profiles, we investigate whether a smaller y
with an additional ECC can perform better than this.

In Profile 2, a fuzzy commitment based on RS codes is used. While y can be lowered
to 2.3 resulting in much smaller and more intervals, the helper data leakage caused by
the ECC completely counteracts the gain in min-entropy such that the effective entropy
Heff
∞ (accounting for the leakage) extracted from the PUF is less than that of Profile 1.

In general, this scheme can be adapted easily to different requirements by adjusting t.
However, as the distance metric is based on dH|S , tamper-sensitivity is relatively poor as
supported by the obtained results. For both min-TS and max-TS, the results are actually
much worse when compared to a scheme based on equidistant quantization only.

With the help of Profile 3, entropy levels reach a similar amount when compared to
Profile 1. This is owed to the differences in the underlying Code-Offset construction when
compared to the Fuzzy Commitment scheme, as the leakage is upper bounded by the parity,
resulting in a reduced leakage when compared to Profile 2. However, extracting more
entropy is at the cost of losing tamper-sensitivity. Moreover, TSmin

node is only defined for
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t = 1 and therefore represents a strong assumption regarding the attacker as in a practical
scenario, the attacker would not be able to divide and distribute the resulting errors to
keep them small. Hence, even while the numbers for TSmin

node indicate a tamper-sensitivity
performance close to Profile 1, it cannot be considered a feasible alternative.

For Profile 4, VT-like codes were used with variable-length bit mapping of the symbols.
Due to the limitations of these codes, t cannot be chosen arbitrarily and is limited to 1.
Consequently, it is not surprising that y cannot be made smaller than 4.24 to still obtain
a reliable device. In contrast to Profile 2, a similar max-TS is obtained when compared to
Profile 1, while performing worse on a node-level. The extracted entropy is marginally
better than Profile 1 but we are of the opinion that the added complexity of carrying out
the computation for an ECC does not justify this gain.

In contrast to all previous profiles, we applied an equiprobable quantization in Profile 5
which cannot be used as a standalone solution under the given simulation parameters. The
given y of 2.87 in the table applies to Qmin only. All other intervals towards Qmax are
therefore significantly larger. To provide a fair comparison, we chose to exclude values
of X with probability of occurrence less than 0.1%, otherwise, tamper-sensitivity in the
outermost intervals would not be bounded which would exaggerate the numbers for max-TS
unnecessarily. When neglecting the significant quantization helper data leakage by W ∗,
the effective entropy after accounting for the ECC helper data is quite significant, as the
equiprobable quantization extracts 3 bits of full entropy per node under this simulated
scenario. Regarding tamper-sensitivity, interesting properties are observed. Since the
innermost intervals of Qmin are relatively small, the earliest possible detection which
translates to min-TS on a node-level, is almost within the range of Profile 1. However,
most errors that occur are also at or within the range of the innermost intervals. As a
result, t must be chosen sufficiently large to account for these errors. This already leads to
a suboptimal TSmin

device behavior. When further analyzing TSmax
node and TSmax

device, then the
obtained tamper-sensitivity performance is clearly worse when compared to Profile 1 and
sometimes equally poor when compared to Profile 2 or Profile 4.

Let us now consider our proposal based on equidistant quantization and LMC under
the name Profile 6. It can be seen right away that y is the smallest for all considered
profiles. For equidistant quantization, this leads to the best-case in terms of entropy that
can be extracted from the PUF PDF. Since the equidistant quantization is quite effective
in removing a significant portion of the noise influence, only a fraction of nodes need
further correction by the LMC. Mainly due to the transformation of q′ to p, the overall
construction is more efficient when compared to, e.g., Profile 3. This results in a total of
∼ 320 effective number of secret bits, the maximum of all previously considered profiles.
In addition to that, it can be seen in Table 1 that the per-node max-TS is similar to
Profile 1 while drastically outperforming all other Profiles. However, the most important
result is that max-TS on a device level is almost only half of Profile 1. When normalizing
TSmax

device(P6) by the number of nodes, i.e., 395/v = 3.1 [σN], then this can be interpreted
as the on-average tamper detection threshold per node is, TDT = 3.1 · σN. This is a
significant gain in terms of tamper-sensitivity and effective number of bits, for various
different levels of reliability and alphabet sizes. Taking into account that TSmin

node(P6) is
equal to TSmax

node(P6) and TSmin
device(P6) is bounded by the min-TS per node of Profile 6, it

is evident that the general behavior of LMC mimics the behavior of Profile 1 with regard
to the detection of tampering, while performing more effectively which allows to choose
a smaller y, resulting in a better entropy and tamper-sensitivity. Overall, this clearly
demonstrates the superiority of this scheme and optimized detection of tampering, even
when providing a higher reliability when compared to schemes with less reliability.

For the analyzed scenario, in particular the noise model, it appears that this is the
optimal method to extract the contained entropy. This is based on the following reasoning:
assuming equidistant quantization intervals, then increasing their number towards infinity
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causes the entropy to approach the differential entropy which is the entropy defined for
the continuous case. Extracting more entropy is not possible. Since LMCs operate more
efficiently, quantization intervals can be made smaller and therefore more quantization
intervals can be used for the same measurement range. This can be done while the loss in
reliability is at a much smaller rate when compared to equiprobable quantization, where
the errors increase at a much faster rate when increasing the number of intervals.

6 Conclusion and Outlook
We presented a thorough comparison of state-of-the-art approaches of PUF-based key
derivation for tamper-evident PUFs. In addition, we proposed our own scheme that is able
to outperform all previous schemes in all relevant aspects, namely: effective number of
secret bits, reliability, and tamper-sensitivity. The latter is a new formalized metric to
assess the scheme outside of an idealized noise error model based on the noise standard
deviation σN. Intuitively, similar to with physical layer security, sensitivity of a system
is bounded by its noise which is why we express this sensitivity in multiples of σN. We
note that the actual assessment of a tamper-evident PUF must still be done individually
and that the developed notion of tamper-sensitivity only supports the comparison of the
underlying concepts for key generation.

Our comparison clearly demonstrates that the design of previous schemes did not
sufficiently take into account the physical tampering that is most important within the
context of tamper-evident PUFs. In order to motivate our approach, we provided strong and
convincing reasoning as to why the previous schemes fall short in that regard. To overcome
their limitations, we applied Limited-Magnitude-Codes based on the Lee/Manhattan
metric and a q-ary non-wrap-around channel. Our results indicate that this metric is
well-suited to solve the problems specific to tamper-evident PUFs and may generally be
able to provide better results when compared to other distance metrics such as Hamming
or Levenshtein due to inherent limitations when the number of symbols is less than the
number of quantization intervals. We point out that achieving a high level of entropy is
still important to thwart attackers that attempt to reconstruct the PUF secret, e.g., by
partially obtaining some of its values by probing.

Since our scheme is not limited to custom-made tamper-evident PUFs, we expect
that our results can be applied to any other PUF design that allows accessing the quasi-
continuous values of the underlying PDF, e.g., [WHGS] or the ones typically implemented
in FPGAs such as [BNTM]. Hence, our work may serve as a future direction to improve
the area efficiency of these PUFs by reducing the number of PUF primitives and extracting
their entropy more efficiently.
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Table 1: Comparison of key derivation schemes for higher-order alphabet PUFs. Profile settings are shared among publications [IHL+, IHKS, TS]
and as follows: µX = 1.8 · 10−13 and σX = 3.6 · 10−15. Individual measurements of the nodes are affected by Gaussian distributed, mean-free noise
with σN = 2 · 10−16.

Profile
a

y L z ECC(n, t) Pe(Y ) Pe(Y v) Pe(Zv) Heff
∞ TSmax

node TSmax
device Distance

(before ECC) (before ECC) (after ECC) [bit] [σN] [σN] Metric

P1b 5.4 8 128 – 6.7× 10−8 8.5× 10−6 (id.) 267 5.4 692 none6.6 16 128 – 4.1× 10−11 5.3× 10−9 (id.) 231 6.6 845

P2c
2.3 32 4 RS(31, 7) 1.2× 10−2 7.9× 10−1 6.1× 10−8 122 148 4352

dH|S3 32 4 RS(31, 4) 2.7× 10−3 2.9× 10−1 3.4× 10−7 193 192 3408
5 16 8 RS(15, 1) 5.7× 10−7 7.3× 10−5 4.8× 10−10 185 160 1880

P3d
2.3 32 4 BCH(255, 8) 2.1× 10−2 9.4× 10−1 8.9× 10−6 166 148 4932

dH|22.7 32 7 BCH(127, 4) 6.9× 10−3 5.9× 10−1 1.1× 10−6 197 173 5109
3.6 16 5 BCH(127, 2) 3.1× 10−4 4.0× 10−2 1.7× 10−7 265 116 1577

P4e 4.95 12 1 VT(·, 1) 7.4× 10−7 9.5× 10−5 4.5× 10−9 276 65 693 dLev4.24 14 4 VT(·, 1) 2.2× 10−5 2.8× 10−3 1.0× 10−6 271 90 828

P5f 2.87 8 2 BCH(255, 7) 1.3× 10−3 1.6× 10−1 1.2× 10−12 272 112 3558 dH|22 BCH(255, 4) 2.8× 10−7 320 2994

P6g

2.1 64 1 LMC(63, 10) 3.6× 10−2 9.9× 10−1 9.1× 10−6 319 6.3 395

dMan
2.3 32 1 LMC(63, 9) 2.1× 10−2 9.4× 10−1 3.3× 10−6 314 6.9 419
2.7 32 1 LMC(63, 10) 6.9× 10−3 5.9× 10−1 3.7× 10−12 273 8.1 508
2.7 16 1 LMC(63, 6) 6.9× 10−3 5.9× 10−1 3.5× 10−6 321 8.1 443

aNeglecting leakage from quantization helper data for computation of Heff
∞ , i.e., only leakage by ECC helper data W is considered.

bProfile 1 (P1): Equidistant quantization without ECC (independent of symbol’s bit mapping)
cProfile 2 (P2): Equidistant quantization and RS-based Fuzzy Commitment scheme (independent of symbol’s bit mapping, n in symbols, t in dH|S)
dProfile 3 (P3): Equidistant quantization and BCH-based Code-Offset scheme (n in bits, t in dH|2)
eProfile 4 (P4): Equidistant quantization, variable-length bit mapping of symbols, VT-like codes (t in dLev)
fProfile 5 (P5): Equiprobable quantization, Gray code bit mapping of symbols, BCH-based Code-Offset scheme (n in bits, t in dH|2)
gProfile 6 (P6): Equidistant quantization, LMC (lu = 1, ld = −1) with concatenated RS code (n in symbols, t in dMan)
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A Codebooks of Profiles
Since some of the min-TS and max-TS results depend on the specific codebook chosen
to carry out the mapping of symbols to bits, we provide this necessary information to
replicate our results. Unfortunately, there is no systematic way provided in [IHL+] on how
to construct the codebook for VT-like codes that are relevant for Profile 4. Therefore,
the results might be slightly different when choosing a different codebook, while their
general behavior will remain the same. All codebooks represent the assigned values to the
quantization intervals from “left to right” (cf. Figure 2).

Codebook of Profile 4 [IHL+] and |L| = 12

L = [0110; 0111; 0011; 0010; 000; 010; 110; 111; 1011; 1010; 1000; 1001]
The maximum magnitude shift while ensuring dLev(Y, Ŷ ) = 1 may occur for the following
values, all of which describe a shift by 6 quantization intervals:

• 0110↔ 110 (insertion/deletion of 0)

• 0111↔ 111 (insertion/deletion of 0)

• 000↔ 1000 (insertion/deletion of 1)

• 0011↔ 1011 (substitution of 0/1 in left most position)

• 0010↔ 1010 (substitution of 0/1 in left most position)

Codebook of Profile 4 [IHL+] and |L| = 14

L = [01100; 01101; 0111; 0011; 0010; 000; 010; 110; 111; 1011; 1010; 1000; 10010; 10011]
The maximum magnitude shift while ensuring dLev(Y, Ŷ ) = 1 may occur for the following
values which describe a shift by 10 quantization intervals:

• 0011↔ 10011 (insertion/deletion of 1)

Codebook of Profile 5 [TS] and |L| = 8

L = [000; 001; 011; 010; 110; 111; 101; 100]
Larger magnitude shifts exceeding the range of one quantization interval while still ensuring
dH|2(Y, Ŷ ) = 1 may occur for the following values:

• 000↔ 010 (shift by 3 quantization intervals of unequal size)

• 011↔ 111 (shift by 3 quantization intervals of unequal size)

• 110↔ 100 (shift by 3 quantization intervals of unequal size)

• 001↔ 101 (shift by 5 quantization intervals of unequal size)

• 000↔ 100 (shift is across the full range of values)
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B Additional Tamper-Sensitivity Results
The following table complements the tamper-sensitivity results of Table 1 regarding min-TS and also provides the numbers for max-TS normalized
by the number of nodes v (last column), therefore representing the on-average per-node sensitivity. These numbers enable a comparison across
different tamper-evident PUF system designs with varying number of PUF nodes v.

Table 2: Extended comparison of TS of different profiles for higher-order alphabet PUFs, including min-TS results and max-TS results normalized
by the number of nodes v = 128 in the tamper-evident PUF system.

Profile y L z ECC(n, t) Pe(Zv) Heff
∞ TSmin

node TSmax
node TSmin

device TSmax
device TSmax

device/v
[bit] [σN] [σN] [σN] [σN] [σN]

P1 5.4 8 128 – 8.5× 10−6 267 5.4 5.4 5.4 692 5.4
6.6 16 – 5.3× 10−9 231 6.6 6.6 6.6 845 6.6

P2 2.3 32 4 RS(31, 7) 6.1× 10−8 122 ∞ 148 4124 4352 34
3 32 4 RS(31, 4) 3.4× 10−7 193 ∞ 192 3075 3408 27
5 16 8 RS(15, 1) 4.8× 10−10 185 ∞ 160 1285 1880 15

P3 2.3 32 4 BCH(255, 8) 8.9× 10−6 166 6.9 148 224 4932 39
2.7 32 7 BCH(127, 4) 1.1× 10−6 197 8.1 173 230 5109 40
3.6 16 5 BCH(127, 2) 1.7× 10−7 265 10.8 116 112 1577 13

P4 4.95 12 1 VT(·, 1) 4.5× 10−9 276 15 65 15 693 5.4
4.24 14 4 VT(·, 1) 1.0× 10−6 271 13 90 13 882 6.9

P5 2.87 8 2 BCH(255, 7) 1.2× 10−12 272 8.7 112 141 3558 30
BCH(255, 5) 2.8× 10−7 320 72 2994 24

P6

2.1 64 1 LMC(63, 10) 9.1× 10−6 319 6.3 6.3 6.3 395 3.1
2.3 32 1 LMC(63, 9) 3.3× 10−6 314 6.9 6.9 6.9 419 3.3
2.7 32 1 LMC(63, 10) 3.7× 10−12 273 8.1 8.1 8.1 508 4.0
2.7 16 1 LMC(63, 6) 3.5× 10−6 321 8.1 8.1 8.1 443 3.5
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C PUF Metrics based on Lee/Manhattan Metric
Originally defined by Maiti et al. in [MGS, MCMS], the metrics Uniqueness and Reliability
based on Hamming distance have become the de facto standard for PUF publications.
While various other metrics have been proposed, they can still be considered as a starting
point to assess the fundamental PUF properties, i.e., if PUF values sufficiently differ from
each other and if they can be reconstructed reliably. While we recommend to always
complement them with additional tests, we nevertheless focus on these two most common
metrics with regard to higher-order alphabets which is owed to their popularity.

The definition of Uniqueness and Reliability is inherently bound to the distance metric
used for the subsequent ECC. For higher-order alphabet based PUFs over Hamming
distance this has been studied in [ION+] already. In contrast, we define Uniqueness and
Reliability over the Lee or Manhattan distance, depending on the q-ary channel model
used, i.e., whether it is used with wrap-around or without.

We note that Uniqueness and Reliability in the binary case, as originally defined
by [MGS, MCMS], is normalized by the length v of the considered response (cf. Figure 1).
This must be done in an appropriate manner also for responses over Lee/Manhattan
distance, as their length is different due to how the distance metrics dLee and dMan are
defined. Lee distance dLee between two quantized PUF responses, with a field size of q, is
defined below in Equation (27). It is circular i.e., dLee(0, q − 1) = 1.

dLee(Y v
1 , Y

v
2 ) =

v∑
i=1

min((y1
i − y2

i ), q − (y1
i − y2

i )) (27)

Similar to before, Manhattan distance dMan between two words is defined below in
Equation (28). It is non-circular, i.e., dLee(0, q − 1) = q − 1.

dMan(Y v
1 , Y

v
2 ) =

v∑
i=1
|y1

i − y2
i | (28)

where Y v
j = {yj

i ; 1 ≤ i ≤ v}, j = 1, 2 and 0 ≤ yj
i ≤ q − 1 For LMCs in order to normalize,

we apply Plotkin’s low rate average distance bound defined in Equation (29) for the
wrap-around channel [CyCW].

dLee ≤
vD

(1−K−1) (29)

where K is the cardinality of C and D is the average Lee weight [CyCW] given by
Equation (30).

D =
{

(q2−1)
4q , odd q

q
4 , even q

(30)

For the practical scenario [ION+] of v = 128 nodes in a PUF device with field size
q = 32, K = q128 this leads to K−1 ≈ 0. Thus Equation (31) holds which makes it
compatible to previous definitions of Uniqueness for binary PUFs [MGS].

dLee

vD
≤ 1 (31)

For Uniqueness over Manhattan distance, the same is achieved by normalizing the
length with v · q. To define the Uniqueness, this leads to Equation (32) for Lee distance
and Equation (33) for Manhattan distance.
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UniquenessdLee
= 2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

dLee(Y v
i , Y

v
j )

v D
× 100% (32)

UniquenessdMan
= 2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

dMan(Y v
i , Y

v
j )

v q
× 100% (33)

where k is the number of devices and v the number of nodes in a device which is equivalent
to its length in symbols. Please note that the computed outcome of these definitions is
quite different to the ones based on Hamming Distance, as the magnitude becomes part of
the Uniqueness which is no longer just a change in symbol. Hence, to improve Uniqueness,
not only the symbols as such would have to change, but also the occurred magnitude.
Additionally note that the computed outcome of Equation (32) compared to Equation (33)
is quite different, since the normalization factor in front of the sum remains unchanged.

In particular, the result of Equation (33) is such that the Uniqueness is bounded to
100% which would be achieved only when for each symbol a maximum magnitude change is
observed. In contrast, empirical results for Equation (32) may exceed 100% of Uniqueness
when the average Lee weight of Equation (30) is exceeded.

To complement the previous Uniqueness definitions, Reliability is defined for both
metrics in Equation (34) and Equation (35)

ReliabilitydLee
= 1
m

m∑
i=1

dLee(Y v
i , Y

v
i,t)

v D
× 100% (34)

ReliabilitydMan
= 1
m

m∑
i=1

dMan(Y v
i , Y

v
i,t)

v q
× 100% (35)

where m is the number of measurements of same PUF device at different times. Since
the channel model corresponding to the work in [ION+] is without wrap-around, we select
Manhattan Distance as the appropriate distance metric. This leads to the results presented
in Figure 10, showing both Uniqueness and Reliability. In contrast to similar figures
for binary PUFs, Uniqueness appears relatively low which is owed to the fundamentally
different definition of Uniqueness over Manhattan distance that combines changes in
symbols and magnitude at the same time. To put the outcome into perspective note that
for the given parameters, a change in 3.125% corresponds to the case when all comparisons
between symbols result in a magnitude of dMan = 1. For the given data, the average
Uniqueness is 21.897% which is very close to the case that every compared symbol has
a distance dMan = 7 which corresponds to 21.875% of Uniqueness. Considering the fact
that this is the first such implementation which differs quite significantly from other PUFs,
Uniqueness appears at a reasonable level which could be improved though to make it more
unique. In contrast, Reliability is at a very high level.

D Example Calculations of LMC
For convenience reasons and clarity of the algorithmic descriptions, we provide examples of
several LMC calculations for the interested reader. They follow the notation of Algorithm 1
and Algorithm 2. Please note that these calculations are based on q′ = 4, i.e., the radix is
a power of two, allowing for a very efficient hardware implementation. These examples
include:

• Figure 11 illustrating the enrollment process.

• Figure 12 illustrating a successful decoding of the previous example.
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Figure 10: Uniqueness and Reliability according to Equation (33) and Equation (35)
based on the evaluation of 115 covers of [ION+] with 32 quantization intervals and a 10×
oversampling for the measurement.

• Figure 13 illustrating a decoding failure as result of an error exceeding the magnitude.

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

Y |10 =

η |2 =

0001 1011

100 010 111 001 011 010 111 100

7 1 3 2 7 44 2

parity from RS(15, 9, 7)

Z |10 =

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Y |2 =1

(mod q)

(mod q′)

(mod q)

2

3 (mod q)

(mod p)

W |2 = (mod p)

W |2 =

W |10 = (mod q)

(mod q)4

Enrollment

ηp =

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1

000 001 010 011 100 101 110 111 000 001

00 01

0001 1011 0001 1011 0001 1011 0001

100 0 10 11 1 001 011 0 10 11 1 100

0 1 2 3 4 5 6 7 0 1

0001 1011 0001 1011 0001 1011 0001 1011 0001 1000 1011 1001 0110 1011 1100C = (mod p)

Figure 11: LMC encode example (q=8, q′ = 4, lu = 2, ld = −1, p=16).
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ε |10 = 0 1

Ŷ |10 =

φ |2 =

Reconstruction
0 0 0 0 0 0 0 0 0 0 0 0 0 0 (mod q)

0 1 2 3 4 5 6 7Y |10 = (mod q)

Ŷ |2 =

(mod q)

(mod q)

00 01 11 00 01 10 11 00 01 10 11 00 01 10 1111 (mod q′)
1

0 0

0 1 2 3 4 5 6 7Z |10 = (mod q)

Enrollment
0 1 2 3 4 5 6 7 0 1

W |10 = (mod q)7 1 3 2 7 44 2

0 1 2 3 4 5 6 7 0 1

0 1 3 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

000 001 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001011

00 01

0001 1111 0001 1011 0001 1011 0001 1011 0001φp |2 = (mod p)

7 1 3 2 7 44 2W |10 = (mod q)

100 0 10 11 1 001 011 0 10 11 1 100W |2 = (mod q)

P |2 = (mod p)10111000 1001 0110 1011 1100

0001 1111 0001 1011 0001 1011 0001 1011 0001 10111000 1001 0110 1011 1100C′ =

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 corrected message from RS(15, 9, 7)Ĉ[1 : 9]|2 =

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01φ′|2 =

2

00ε′|2 =

ε′′|10 =

Ẑ |10 =

00 01 00 00 00 00 00 00 00 00 00 00 00 00 00

0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

00 00

0 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

4

5

6

(mod p)

(mod q′)

(mod q′)

(mod q′)

(mod q)

0001 1011 0001 1011 0001 1011 0001 1011 0001 10111000 1001 0110 1011 1100Ĉ =

(mod p)

(mod p)3

Figure 12: LMC example for successful decoding (q=8, q′ = 4 , lu = 2, ld = −1, p=16).
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ε |10 = 0 4

Ŷ |10 =

φ |2 =

Reconstruction
0 0 0 0 0 0 0 0 0 0 0 0 0 0 (mod q)

0 1 2 3 4 5 6 7Y |10 = (mod q)

Ŷ |2 =

(mod q)

(mod q)

00 01 11 00 01 10 11 00 01 10 11 00 01 10 1110 (mod q′)
1

0 0

0 1 2 3 4 5 6 7Z |10 = (mod q)

Enrollment
0 1 2 3 4 5 6 7 0 1

W |10 = (mod q)7 1 3 2 7 44 2

0 1 2 3 4 5 6 7 0 1

0 1 6 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

000 001 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001110

00 01

0001 1011 0001 1011 0001 1011 0001 1011 0001φp |2 = (mod p)

7 1 3 2 7 44 2W |10 = (mod q)

100 0 10 11 1 001 011 0 10 11 1 100W |2 = (mod q)

P |2 = (mod p)10111000 1001 0110 1011 1100

0001 1011 0001 1011 0001 1011 0001 1011 0001 10111000 1001 0110 1011 1100C′ =

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 corrected message from RS(15, 9, 7)Ĉ[1 : 9]|2 =

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01φ′|2 =

2

00ε′|2 =

ε′′|10 =

Ẑ |10 =

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0 00 0 0 0 0 0 0 0 0 0 0 0 0 0

00 00

0 0

0 1 6 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

4

5

6

(mod p)

(mod q′)

(mod q′)

(mod q′)

(mod q)

0001 1011 0001 1011 0001 1011 0001 1011 0001 10111000 1001 0110 1011 1100Ĉ =

(mod p)

(mod p)3

Figure 13: LMC example for decoding failure (q=8, q′ = 4 , lu = 2, ld = −1, p=16).
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