
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 552–585. DOI:10.46586/tches.v2025.i1.552-585

Prover - Toward More Efficient Formal
Verification of Masking in Probing Model

Feng Zhou1,2,3, Hua Chen†2, Limin Fan2

1 University of Chinese Academy of Sciences, Beijing, China
2 TCA Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China

zhoufeng2021@iscas.ac.cn, chenhua@iscas.ac.cn, fanlimin@iscas.ac.cn
3 Zhongguancun Laboratory, Beijing, China

Abstract. In recent years, formal verification has emerged as a crucial method for
assessing security against Side-Channel attacks of masked implementations, owing to
its remarkable versatility and high degree of automation. However, formal verification
still faces technical bottlenecks in balancing accuracy and efficiency, thereby limiting
its scalability. Former tools like maskVerif and CocoAlma are very efficient but
they face accuracy issues when verifying schemes that utilize properties of Boolean
functions. Later, SILVER addressed the accuracy issue, albeit at the cost of signifi-
cantly reduced speed and scalability compared to maskVerif. Consequently, there is a
pressing need to develop formal verification tools that are both efficient and accurate
for designing secure schemes and evaluating implementations. This paper’s primary
contribution lies in proposing several approaches to develop a more efficient and
scalable formal verification tool called Prover, which is built upon SILVER. Firstly,
inspired by the auxiliary data structures proposed by Eldib et al. and optimistic
sampling rule of maskVerif, we introduce two reduction rules aimed at diminishing
the size of observable sets and secret sets in statistical independence checks. These
rules substantially decrease, or even eliminate, the need for repeated computation of
probability distributions using Reduced Ordered Binary Decision Diagrams (ROB-
DDs), a time-intensive procedure in verification. Subsequently, we integrate one of
these reduction rules into the uniformity check to mitigate its complexity. Secondly,
we identify that variable ordering significantly impacts efficiency and optimize it
for constructing ROBDDs, resulting in much smaller representations of investigated
functions. Lastly, we present the algorithm of Prover, which efficiently verifies the
security and uniformity of masked implementations in probing model with or without
the presence of glitches. Experimental results demonstrate that our proposed tool
Prover offers a better balance between efficiency and accuracy compared to other
state-of-the-art tools (IronMask, CocoAlma, maskVerif, and SILVER). In our ex-
periments, we also found an S-box that can only be verified by Prover, as IronMask
cannot verify S-boxes, and both CocoAlma and maskVerif suffer from false positive
issues. Additionally, SILVER runs out of time during verification.
Keywords: Side-Channel Attacks · Masking · Formal Verification · Glitch-Extended
Probing Security · Reduced Ordered Binary Decision Diagrams

1 Introduction
Cryptographic algorithms play a crucial role in our daily lives, being implemented in
cryptographic devices widely deployed across various applications such as smart cards
and IoT (Internet of Things) systems. In recent years, Side-Channel Attacks (SCA),

†Hua Chen is the corresponding author.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.552-585
mailto:zhoufeng2021@iscas.ac.cn
mailto:chenhua@iscas.ac.cn
mailto:fanlimin@iscas.ac.cn
http://creativecommons.org/licenses/by/4.0/


Feng Zhou, Hua Chen, Limin Fan 553

including timing attacks [Koc96] and power analysis [KJJ99], have emerged as potent
threats against cryptographic modules. To mitigate the risks posed by SCAs, numerous
countermeasures have been proposed, among which masking [ISW03, Tri03] stands out as
one of the most effective techniques. Based on the concept of secret sharing, the security
of masking schemes can be proven theoretically under reasonable assumptions. Ishai et
al. [ISW03] demonstrated the security of their schemes within their proposed d-probing
model (or standard probing model), which has since been widely adopted by subsequent
works. However, it has been shown that certain physical anomalies, such as glitches,
transitions, and couplings, can compromise the leakage assumptions in the d-probing
model [FGP+18]. In the realm of hardware masking, a significant challenge arises as these
schemes are susceptible to vulnerabilities in the presence of glitches [MPG05, MPO05]. To
address this challenge, threshold implementations (TI) [NRR06] have emerged, providing
inherent resistance to glitches through the fulfillment of three key properties: correctness,
incompleteness, and uniformity. Following TI, numerous masking techniques against
glitches have been proposed [RBN+15a, GMK16, SM21a].

To formally define (or verify) the security of masking in the presence of glitches, Bloem
et al. [BGI+18] and Faust et al. [FGP+18] independently extended the d-probing model,
incorporating glitches, and introduced a more robust model known as the glitch-extended
probing model.

However, the theoretical security of masking schemes in formal models does not di-
rectly ensure the practical security of corresponding implementations. Hence, it becomes
imperative to verify and assess the effectiveness of masking countermeasures. Consider-
able effort has been invested in verifying software implementations [MOPT12, BRNI13,
EWS14, BBD+15, ZGSW18, BGR18, GXSC21], yielding more sophisticated approaches.
In contrast, the range of existing frameworks encompassing verification under the glitch-
extended probing model is quite limited. Based on the adopted approaches, research on
such frameworks can be categorized into the following three types.

Bloem et al. [BGI+18] introduced the first formal verification tool, REBECCA, de-
signed to assess the security of hardware implementations. Their approach leverages the
spectral characteristics of Boolean functions. Specifically, if a nonzero spectral coefficient
exists between any Boolean function defined over the circuit outputs and a linear combina-
tion of sensitive variables, the implementation is deemed insecure. However, due to the
considerable time overhead required to compute spectral coefficients, REBECCA resorts
to certain approximations via SAT encoding, resulting in false positives. Additionally, the
inevitable use of SAT solvers leads to inefficiencies and limited scalability. Subsequent de-
velopments of REBECCA, CocoAlma [GHP+21, HB21], demonstrate improved usability
and performance.

In the realm of language-based verification methods (the second approach), Barthe et al.
[BBC+19] extended their techniques proposed in [BBD+15] to address hardware masking,
creating a unified framework known as maskVerif. maskVerif accommodates various security
notions such as standard probing security, (Strong) Non-Interference (NI/SNI) [BBD+16],
as well as robust security notions under the d-probing model with glitches or transitions.
Compared to the REBECCA tool, maskVerif exhibits high efficiency. However, owing
to the conservative nature of language-based methods, false positives are also inevitably
encountered.

The third approach is rooted in the concept of statistical independence. Building upon
the efforts to consolidate security notions [DBR19], Knichel et al. [KSM20] reformulated
the concepts of probing security, (Strong/Probe Isolating) Non-Interference (NI/SNI/PINI)
from the perspective of probability distributions. Based on this approach, the SILVER
tool was developed, surpassing the capabilities of maskVerif by incorporating verification of
the PINI security notion [CS20]. During verification, SILVER constructs Reduced Ordered
Binary Decision Diagrams (ROBDDs) for every possible combination of observations in the



554 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

circuit to compute probability distributions. However, as ROBDDs have finite capabilities
in representing Boolean functions with numerous input variables, SILVER faces limitations
in terms of efficiency and scalability. Particularly when larger masked circuits are involved,
SILVER exhibits significant inefficiencies.

In addition to leakage caused by glitches, several studies also address formal verification
for transitional leakage in the robust probing model, including CocoAlma [GHP+21,
HB21], SILVER [MKSM22], and fullverif [CGLS20, MCS22]. In this paper, we focus on
leakage caused by glitches and will not explore transitional leakage.

Another research area concerns the design and verification of masked implementations
based on composable gadgets. These gadgets, such as robust SNI ISW multiplication
[FGP+18], HPC1 and HPC2 [CGLS20], or HPC3 [KM22], often rely on security notions
stronger than probing security, such as SNI [BBD+16] and PINI [CS20]. Tools like fullverif
[CGLS20] are capable of verifying the complete designs of masked implementations based
on the framework of PINI. There are also tools that verify security properties of standard
gadgets under probing model or random probing model [Ajt11, DDF14], such as IronMask
[BMRT22].

Indeed, formal verification of security in masked implementations has made notable
progress. However, existing research results still grapple with challenges in balancing
accuracy and efficiency. Specifically, current tools are either fast but inaccurate (such
as maskVerif) or accurate but slow (like SILVER). For instance, consider verification
under the glitch-extended probing model: maskVerif takes no more than one second to
confirm the security of the first-order DOM implementation of the AES S-box [BBC+19],
yet it inaccurately reports the secure implementation of Q4

12 in [BNN+15] as insecure
[KSM20]. Moreover, several works, e.g., [SM21a], have asserted that maskVerif cannot
verify the security of their constructions without fresh randomness. Meanwhile, SILVER
correctly verifies the security of Q4

12 but takes 20 minutes to confirm the security of the
DOM implementation on a significantly more powerful machine [KSM20]. This situation
underscores the need for an approach that integrates efficient heuristic rules with accurate
probability enumeration to achieve a better balance between accuracy and efficiency.

Our Contributions. In this paper, we tackle the low efficiency issue of SILVER and
propose several methods to significantly enhance efficiency while maintaining accuracy,
resulting in the formal verification tool, Prover. Firstly, inspired by the auxiliary data
structures introduced in [EWS14], we are able to adopt the similar idea of optimistic
sampling rule from maskVerif [BBD+15, BBC+19] in our work. This led us to introduce
two reduction rules aimed at significantly decreasing the size of observation and secret sets.
These rules are applicable in statistical independence checks under both standard and
glitch-extended probing models, as well as in the verification of uniformity. By reducing
the size of observation sets (and secret sets), which are exponentially related to complexity,
the actual computational complexity is substantially reduced. In some cases, these rules
even lead to the elimination of the observation set, rendering the expensive operation
of constructing ROBDDs unnecessary. Secondly, we observe that the variable ordering
of ROBDDs profoundly impacts SILVER’s performance. Through analysis, we identify
two potentially more efficient orderings and validate our findings through experiments.
The optimized orderings prove to be much more efficient, particularly in larger masked
circuits. Finally, we implement our approaches into Prover, a tool built upon SILVER. We
also conducted extensive experiments to compare Prover to other state-of-the-art tools:
IronMask, CocoAlma, maskVerif, and SILVER. Experimental results illustrate that Prover
achieves a superior balance between efficiency and accuracy compared to the other tools.
Moreover, with IronMask beyond the scope of S-box verification, Prover successfully verified
an S-box implementation that SILVER failed to complete within the allotted time, while
CocoAlma and maskVerif encountered false positive issues.



Feng Zhou, Hua Chen, Limin Fan 555

2 Preliminaries

2.1 Symbols and Notations
The symbols and notations used in this paper are shown in Table 1.

Table 1: The symbols and notations used in this paper
Symbols /
Notations Meaning

GF2,GFn2 binary field, vectorial space over binary field
x,x a variable, a set of variables
α a boolean value
α a set of boolean values, also denoted by an integer

∑|α|
i=0 αi · 2i

],∩,∪, \ disjoint set union, set intersection, set union, set difference
|S|, ∅ size of a set S, empty set
⊕,+ exclusive-or, addition in binary field
∧, · and operation, multiplication in binary field

¬,∨,∨,∧,⊕ negation, or, nor, nand, xnor operation in binary field⊕
i xi,

∧
i xi summation and production in binary field

x = α |x| = |α|, and for 1 ≤ i ≤ |x|, xi = αi
xλ(λx) a product(linear) combination

∧
i x

λi
i (
⊕

i x
λi
i ) of variables in x

x′,xi subset of x, x \ xi
Pr[A] probability of a event A

Sh(x), Sh(x) the shares of variable x, the shares of variables in x
Od d-th order observation set, i.e., the union of observation set of d gates

(ni)supp(n) the set of variables that appear in the expression of fn
perf(n) the set of perfect mask of observation function fn

2.2 Probability Distributions of Boolean Variables
A Boolean random variable x ∈ GF2 can take on the values 0 or 1. A set of Boolean
random variables x consists of Boolean variables.

First, we define the probability mass function of a Boolean random variable set.

Definition 1 (Probability Mass Function). The probability mass function of a Boolean
variable set x is defined as px(α) = Pr[x = α].

Given any two Boolean random variable sets, we can define their joint probability mass
function.

Definition 2 (Joint Probability Mass Function). The joint probability mass function
of Boolean variable sets x and y is defined as px,y(α,β) = Pr[x = α,y = β].

The relationship between the probability mass function and the joint probability mass
function is px(α) =

∑
β px,y(α,β).

Based on the definition of the joint probability mass function of Boolean variable sets,
we can define the statistical independence of two Boolean variable sets.

Definition 3 (Statistical Independence). Two Boolean variable sets x and y are
statistically independent if and only if for any possible combinations of α and β, the
equation px,y(α,β) = px(α)py(β) holds.



556 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

2.3 Masked Circuits
The hardware implementation of a masking scheme, a physical circuit, consists of combina-
tional gates, registers, and wires. For convenience, both combinational gates and registers
are referred to as gates in the rest of this paper. Each gate performs an operation on
its input and outputs a value carried by the corresponding output wire. The operations
considered for gates in this paper include in, ref, out, reg,∧,∨,¬,∧,∨,⊕,⊕. Detailed
explanations of these operations will be covered later in this section.

The physical circuits can be modeled as a masked circuit C [KSM20]. It is defined as a
binary tuple (x, G), where x ∈ GFt2 is the set of secret variables and G is a labeled directed
acyclic graph. However, the physical circuit typically does not take x as inputs. Instead,
each secret variable xi ∈ x is split into d+ 1 shares by secret sharing, i.e., xi =

⊕d+1
j=1 xij

and fed to the circuit C. The set of shares is denoted by Sh(x) = {xij |xi =
⊕d+1

j=1 xij ,
i ∈ [1, t], j ∈ [1, d+ 1]}.

The elements and internal connections in physical circuits are modeled by the second
element of the tuple, G = (N , E , z, op, f). N is the set of vertices, where a vertex n is in
N if and only if there exists a gate in the physical circuit mapped to n (we use vertex n
and gate n interchangeably in this paper). The set E is the set of directed edges, where an
edge e = (nj , ni) is in E if and only if there is a wire connecting the input of gate nj to
the output of gate ni in the physical circuit. In this case, ni is considered a child of nj . A
unary gate n has only one child, denoted by n.lft, while a binary gate n has two children,
n.lft and n.rgt.

The set of input variables of the circuit, denoted by z, includes the set of shares Sh(x),
which is a uniform sharing of x, and the set of fresh masks r. These fresh masks are
independently, identically, and uniformly distributed random Boolean variables.

The function op maps the vertex n ∈ N to its operation. Each in gate stores a certain
share of a secret variable, and each ref gate stores a fresh mask in r. The operations of
intermediate and output registers, which store the middle and final results of the masked
circuit, are denoted by reg and out, respectively. Other gates perform regular Boolean
operations, and their functionality is self-explanatory from their names. As a side note,
unary gates are reg, out, and ¬, while binary gates include ∧, ∨, ∧, ∨, ⊕, and ⊕. The in and
ref gates do not necessarily have inputs because the values they output are modeled to have
the previously described uniform distributions (or uniform sharing) in the characterization
of circuit inputs z.

The function f : N → (z → GF2) maps the vertex n ∈ N in the graph to the Boolean
function fn : z → GF2 computed by the corresponding gate. This function is also referred
to as the observation function. The specific definition of the observation function fn of
gate n is as follows:

fn =



xij op(n) = in, gate n stores xij ∈ Sh(x)
r op(n) = ref, gate n stores r ∈ r
fn.lft op(n) ∈ {reg, out}
¬fn.lft op(n) = ¬
fn.lft ◦ fn.rgt, ◦ = op(n) ∈ {∧,∨,∧,∨,⊕,⊕}

. (1)

Example 1. The algebraic expressions are shown in Figure 1b for the first order DOM
scheme of multiplication over GF2, i.e., c = g(a, b) = ab. In order not to leak the actual
value of a, b and c in a first-order probing attack, secret inputs a and b are both split
into two shares a1, a2, b1b2 and a bit fresh mask r is introduced. To prevent glitches
from propagating back to inputs, four registers x1, x2, x3, x4 are used to store the results
of combinational logic g1, g2, g3, g4. A possible hardware implementation (an abstracted
version ignoring the control or clock signals) for this scheme is shown in Figure 1a. The



Feng Zhou, Hua Chen, Limin Fan 557

annotation i_j of an in gate indicates it stores the j-th share of secret variable xi. The
corresponding labeled directed acyclic graph of this implementation is shown in Figure 1c.

Input: a1, a2, b1, b2, r
Output: c1 = fn17 , c2 = fn18

1: fn0 = in 0_0 a1
2: fn1 = in 0_1 a2
3: fn2 = in 1_0 b1
4: fn3 = in 1_1 b2
5: fn4 = ref r
6: fn5 = fn0 ∧ fn3

7: fn6 = fn1 ∧ fn2

8: fn7 = fn0 ∧ fn2

9: fn8 = fn1 ∧ fn3

10: fn9 = fn5 ⊕ fn4

11: fn10 = fn6 ⊕ fn4

12: fn11 = reg fn7

13: fn12 = reg fn8

14: fn13 = reg fn9

15: fn14 = reg fn10

16: fn15 = fn13 ⊕ fn11

17: fn16 = fn14 ⊕ fn12

18: fn17 = out fn15

19: fn18 = out fn16

(a) First order DOM implementa-
tion of multipilication

g1(a1, b1) = a1b1 → x1
g2(a1, b2, r) = a1b2 + r → x2 x1 + x2 = c1
g3(a2, b1, r) = a2b1 + r → x3 x3 + x4 = c2
g4(a2, b2) = a2b2 → x4

(b) First order DOM scheme of multipilication

a1

n0 : in

b1

n2 : in

b2

n3 : in

a2

n1 : in

n7 : ∧

a1b1

n5 : ∧

a1b2 r
n4 : ref

n6 : ∧

a2b1

n8 : ∧

a2b2

n9 : ⊕

a1b2 ⊕ r

n10 : ⊕

a2b1 ⊕ r

n11 : reg

x1 = a1b1

n13 : reg

x2 = a1b2 ⊕ r

n14 : reg

x3 = a2b1 ⊕ r

n12 : reg

x4 = a2b2

n15 : ⊕

c1 = x1 ⊕ x2

n16 : ⊕

c2 = x3 ⊕ x4

n17 : out

c1

n18 : out

c2

(c) Graph representation of 1st order DOM implementation
of multipilication

Figure 1: Example of masked hardware implementation

2.4 Security Model
The standard probing model [ISW03] and the glitch-extended probing model [FGP+18]
are commonly used models for security analysis in software and hardware scenarios,
respectively. In the standard probing model, an attacker can place a standard probe on a
wire e to observe the value it carries. In contrast, in the glitch-extended probing model,
a glitch-extended probe on a wire e enables the attacker to recover all the stable signals
contributing to the value carried by e. For example, a standard probe on the output wire
of gate n15 allows the attacker to recover the value of fn15 , while a glitch-extended probe
recovers the outputs of gates n11 and n13, i.e., {fn11 , fn13}.

We define an observation set On as the set of gates whose outputs are recovered by the
attacker when placing a standard or glitch-extended probe on the output wire of gate n.
The attacker can obtain the joint probability distribution of the observation function of
the gates in the observation set. The calculation of observation set of a gate n under the
standard probing model (standard observation set) is straightforward, i.e., On = {n}, while
On in the glitch-extended probing model (glitch-extended observation set) is calculated as
follows:



558 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

On =


{n}, if op(n) ∈ {in, ref, reg, out}
On.lft, if op(n) ∈ {¬}
On.lft ∪On.rgt, otherwise

In the standard (or glitch-extended) probing model with order d, an attacker can
employ d standard (or glitch-extended) probes to interrogate the output wires of d gates
in the masked circuit. Consequently, they can ascertain the joint probability distribution
of observation functions in the union set of these d observation sets. Denoting a set of
gates N where |N | = d, we represent Od as the d-th order observation set, defined as
Od =

⋃
ni∈N Oni .

The collection of observation functions corresponding to the gates in the observation
set O is symbolized by f , where f = {fn|n ∈ O}. Each element in f is a single-output
boolean function, collectively forming multi-output boolean functions defined over variables
in z.

It is important to note that Od constitutes a set of gates, while f represents a set of
functions, and statistical independence exists between sets of variables rather than between
functions and variables. Thus, it is emphasized that the statistical independence in the
above definition pertains to the outputs of f (which can be regarded as a set of variables)
and x. However, for brevity, less stringent terminology such as statistical independence
between f and x or between Od and x will be employed.

Given a masked circuit C = (x, G) with x as its secret inputs, this paper defines the
notion of standard (or glitch-extended) probing security [DBR19] as follows.

Definition 4 (d-th Order Standard Probing Security). C is d-th order standard
probing secure if for any set N ⊆ N with |N | ≤ d, the observation function set f
corresponding to the standard observation set O =

⋃
n∈N On is statistically independent

of x.

Definition 5 (d-th Order Glitch-Extended Probing Security). C is d-th order
glitch-extended probing secure if for any set N ⊆ N with |N | ≤ d, the observation function
set f corresponding to the glitch-extended observation set O =

⋃
n∈N On is statistically

independent of x.

2.5 Statistical Independence Check Based on ROBDDs
SILVER1, developed by the authors of [KSM20], stands as a prominent tool in the formal
verification of masked implementations.

In practice, it is not necessary to verify the security of every d′-th (d′ ≤ d) order
observation set Od′ to establish the security of a masked circuit. SILVER, depending on
the selected model (standard or glitch-extended probing model), initially computes the set
of probing positions P. The security verification then focuses on all the d′-tuples (d′ ≤ d)
from P. The rationale for this simplification is as follows.

Since registers output the same value and have the same observation set as their left
children, they are seen as redundant elements under the standard probing model. Therefore
they are excluded from P. In other words, under the standard probing model, the set of
probing positions is defined as P := {n|op(n) ∈ {in, ref,¬,∧,∨,∧,∨,⊕,⊕}}.

In the glitch-extended probing model, placing a glitch-extended probe at the input of a
register (which is also the output of the left child of this register) provides the attacker
with more information about the circuit compared to placing the probe at the output of a
combinational logic gate. Thus, for P , it suffices to include only the left children of register

1https://github.com/Chair-for-Security-Engineering/SILVER

https://github.com/Chair-for-Security-Engineering/SILVER


Feng Zhou, Hua Chen, Limin Fan 559

nodes, since the observation sets of the other gates are a subset of the observation sets of
the registers’ left children. In other words, P := {n.lft|op(n) ∈ {reg, out}}.

Given a masked implementation C = (x, G), SILVER initiates verification with d = 1.
It examines the statistical independence between the outputs of the observation function
set f and the set of secret variables x for each d-th order observation set Od =

⋃
n∈ROn,

where R ⊆ P and |R| = d. If all Od sets maintain security for the current d, SILVER
increments d by 1 and continue to verify the security of all Od sets with the incremented
d. If any observation set Od lacks statistical independence from x, SILVER returns the
actual security order d− 1 and the set of probed insecure registers R.

The most critical and time-consuming step in the verification process involves confirming
the statistical independence between f and x. Since f and x are considered as two sets of
boolean variables, Theorem 1 is introduced in [KSM20] to verify the independence between
f and x. Specifically, this theorem requires verifying the mutual independence of the event
f ′ = α and the event x′ = β for each subset f ′ of f and each subset x′ of x.

Theorem 1. [KSM20] Two sets of random boolean variables x,y are statistically inde-
pendent if and only if for all x′ ⊆ x,y′ ⊆ y, where x′ 6= ∅ and y′ 6= ∅, there exist α,β
such that px′,y′(α,β) = px′(α)py′(β), where α,β can be any two sets of boolean values.

The verification of mutual independence relies on the equation Pr[f ′ = α,x′ = β] =
Pr[f ′ = α] Pr[x′ = β]. Note that each secret variable xi in x is also perceived as boolean
functions (defined over variables in Sh(x)). Consequently, this equation involves computing
the joint probability of outputs of three multi-output boolean functions f ′ ∪ x′,f ′,x′

respectively, which is non-trivial. However, if α is fixed to 2|f ′| − 1 (recall that an integer
could be interpreted as a set of boolean values, mentioned in the Table 1), i.e., all elements
in f ′ are assigned the value 1, the joint probability of f ′ = 2|f ′| − 1 equals Pr[f = 1],
where f :=

∧
fi∈f ′ fi is a single-output boolean function. Similar computations apply for

the probabilities Pr[x′ = 2|x′| − 1] and Pr[f ′ = 2|f ′| − 1,x′ = 2|x′| − 1]. Fortunately, the
output probability of a single-output boolean function can be efficiently computed using
Reduced Ordered Binary Decision Diagrams (ROBDDs) [TN95, Mil98]. Hence, Theorem
1 can be utilized to prove statistical independence between f ′ and x through ROBDDs,
with reductions from multi-output boolean functions to single-output boolean functions.
Notably, according to [Mil98], the joint output probability of f ′ ∪ x′ could be computed
without constructing new ROBDDs.

To streamline representation, this paper introduces the product combination coefficient
λ ∈ GF|f |2 for each subset f ′ of f . Specifically, ∀fi ∈ f , if fi ∈ f ′, then λi = 1, otherwise
λi = 0. The event f ′ = 2|f ′| − 1 can be denoted as

∧|f |
i=1 f

λi
i = 1, abbreviated as

fλ = 1. Thus, the probability equation Pr[f ′ = α,x′ = β] = Pr[f ′ = α] Pr[x′ = β] with
α = 2|f ′| − 1 and β = 2|x′| − 1 can be expressed as

Pr[fλ = 1,xγ = 1] = Pr[fλ = 1] Pr[xγ = 1] (2)

Using this notation, f and x are statistically independent if and only if for all 0 6= λ ∈
GF|f |2 , 0 6= γ ∈ GF|x|2 , Equation 2 holds.

3 Reduction Rules
SILVER encounters efficiency challenges, particularly when verifying larger implementations
such as the masked S-box of AES. A significant contributing factor to this inefficiency
is its exponential complexity. When verifying the statistical independence between the
observation function set f and the secret variable set x, SILVER needs to verify Equation
2 for (2|x| − 1)(2|f | − 1) combinations. This complexity scales exponentially with the size
of f ∪ x.



560 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

To address this issue, we propose two Reduction Rules in this section to diminish the
size of f and x. Instead of constructing ROBDDs to precisely characterize the observation
function fn of a gate n, we utilize several data structures to store necessary information.
This information is sufficient to infer that fn has been masked by a fresh mask that is
not used elsewhere (such a mask is referred to as a perfect mask). Consequently, the
observation function fn is independently uniformly distributed. Thus, it can be safely
removed from the observation functions f without altering the result of the statistical
independence check.

3.1 Auxiliary Data Structures
Inspired by prior work in formal verification of software masking [EWS14, OMHE17,
ZGSW18], we introduce auxiliary data structures in this section to infer the independent
uniform distribution of a single observation function.

Consider the example in Figure 1, where gate n9 masks the results of n5 (a1b2) by adding
a fresh mask r to it. Consequently, r ensures that the observation function fn9 = a1b2 ⊕ r
follows a uniform distribution. We observe that if the expression of fn can be rewritten as
r ⊕ f ′n, where r does not appear in the expression of f ′n (i.e., r is not a variable of f ′n),
then fn follows a uniform distribution and r is a perfect mask for fn.

Note that r also satisfies the aforementioned property required to be a perfect mask
of gates n4, n13, n15, n17 and n10, n14, n16, n18. Essentially, the perfect masks of a non-
leaf gate originate from its child gates, while a leaf gate uses, as a perfect mask, the
independently uniformly distributed random variable it stores. In other words, r is
transmitted as a perfect mask through two paths: n4 → n9 → n13 → n15 → n17 and
n4 → n10 → n14 → n16 → n18. This transmission requires two conditions. First, the
parent gate n must be one of the gates that operates a function that is bijective to its
inputs, i.e., binary gates {⊕,⊕} and unary gates {¬, reg, in, out}. Second, if one child
gate have perfect masks that do not occur in the expression of the other child gate (if
the other child exists), then these perfect masks are transmitted to the parent gate. Note
that the second condition implies that the transmitted perfect masks only occur once in
the expression of the parent gate. Thus, fn can be rewritten as f ′n ⊕

⊕
r∈perf(n) r where

perf(n) denotes the set of perfect masks of gate n.
Now we introduce the method to compute perf(n) for every gate in C. We start with

the leaf gates. Since each secret variable xi ∈ x has d+ 1 shares and any selection of d
shares of xi are independent of each other and follows a uniform distribution [Bil15], the
first d shares of xi can function as perfect masks and the last share is seen as a function
defined over variables in {xi, xi1, · · · , xid}, i.e., xi,d+1 = xi ⊕

⊕d
j=1 xij . Following this

observation, we have that for 1 ≤ i ≤ |x|, 1 ≤ j ≤ d, an in gate that store xij have
perfect masks xij and for 1 ≤ i ≤ |x|, an in gate that store xi,d+1 have perfect masks
{xi1, · · · , xid}. The perfect mask of ref gates is the fresh mask it stores.

It is not straightforward to obtain the perfect masks of a non-leaf gate n. First, we
should obtain supp(n), the set of variables appearing in the expression of fn, which is a
subset of z. It is computed as follows:

supp(n) =


{fn}, if op(n) ∈ {in, ref}, fn 6= xi,d+1

{xi, xi1, . . . , xid}, if op(n) = in, fn = xi,d+1

supp(n.lft), if op(n) ∈ {¬, reg, out}
supp(n.lft) ∪ supp(n.rgt), otherwise

(3)

With supp(n), perf(n) can be computed using Equation 4. Note that in the second
line of Equation 4, the left child n.lft transmits the subset of its perfect masks perf(n.lft) \
supp(n.rgt) to its parent. The elements in perf(n.lft)\ supp(n.rgt) are the perfect masks of
n.lft that do not appear in the expression of n.rgt, indicating that these masks will appear



Feng Zhou, Hua Chen, Limin Fan 561

in the expression of n exactly once. The same analysis holds for perf(n.rgt) \ supp(n.lft).
Equation 4 also ensures that the transmission of perfect masks only occurs between the
aforementioned bijective gates (rather than non-bijective gates) and their children.

perf(n) =



supp(n) \ x, if op(n) ∈ {in, ref}
(perf(n.lft) \ supp(n.rgt))

⋃
(perf(n.rgt) \ supp(n.lft))

, if op(n) ∈ {⊕,⊕}

perf(n.lft), if op(n) ∈ {¬, reg, out}
∅, otherwise

(4)

In addition to supp(n) and perf(n), we also define nisupp(n) to count the number of
shares that appear in the expression of a gate. It can be computed using Equation 5. The
difference between supp(n) and nisupp(n) is that the former considers z ∪ x \ {xi,d+1|1 ≤
i ≤ |x|} as the set of input variables to the observation functions, while the latter considers
only z as the set of input variables.

nisupp(n) =


{fn}, if op(n) ∈ {in, ref}
nisupp(n.lft), if op(n) ∈ {¬, reg, out}
nisupp(n.lft) ∪ nisupp(n.rgt), otherwise

(5)

The auxiliary data structures are also defined over a set of gates N , namely supp(N)
:=
⋃
n∈N supp(n), perf(N) :=

⋃
n∈N perf(n) and nisupp(N) :=

⋃
n∈N nisupp(n).

3.2 Reduction Rules

From the last subsection, we understand that if the perfect mask set of a gate n is not
empty, then the single observation function fn has a uniform distribution. However, the
observation set Od usually contains more than one observation function. Even if each gate
in Od has a non-empty perfect mask set, it is not sufficient to ensure that the observation
functions f are jointly uniform. Consider three observation functions fn1 = a1 + r1,
fn2 = a2 + r2, fn3 = r1 + r2, where the secret variable a is split into two shares a1 and a2,
and r1 and r2 are two fresh masks. Although n1, n2, and n3 all have at least one perfect
mask and each follows a uniform distribution, combining them will leak information about
a. This is because the three functions share some identical perfect masks.

Given this observation, to establish that Od follows a joint uniform distribution, a
straightforward approach would involve ensuring that each gate n ∈ Od possesses at
least one perfect mask not utilized by other gates as support variables. In essence, for
1 ≤ i ≤ |Od|, it is necessary that ni ∈ Od and perf(ni) \

⋃
j 6=i supp(nj) 6= ∅.

However, we demonstrate that proving the joint uniform distribution of Od can be
achieved through a less stringent condition by utilizing the following Reduction Rule.

Reduction Rule 1. Given a d-th order observation set Od, if ∃ni ∈ Od (where i is the
index of ni in Od) such that r ∈ perf(ni) and r /∈ supp(Od \ {ni}), then Od is statistically
independent of x if and only if Od \ {ni} is statistically independent of x.

Proof. Let f ′ni
= r + fni

be the de-masked observation function (then r /∈ supp(f ′ni
)) and

fī = f \ {fni
} be the observation functions in Od \ {ni}.

=⇒ We have pfī,x(αī,β) =
∑
αi
pfī,x,fi(αī,β, αi) = px(β)

∑
αi
pfī,fi(αī,αi) = pfī

(αī)·
px(β). Hence, fī, i.e., Od \ {ni} is statistically independent of x.



562 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

⇐= First, we show that fni
is statistically independent of fī ∪ x.

Pr[f = α,x = β]
= Pr[r + f ′ni

= αi,fī = αī,x = β]
= Pr[r = 0, f ′ni

= αi,fī = αī,x = β] + Pr[r = 1, f ′ni
= ¬αi,fī = αī,x = β]

= 1
2 Pr[f ′ni

= αi,fī = αī,x = β] + 1
2 Pr[f ′ni

= ¬αi,fī = αī,x = β]

= 1
2 Pr[fī = αī,x = β]

= Pr[fni = αi] Pr[fī = αī,x = β]

The fourth line of the equation holds because r does not appear in the support
variable set of {f ′ni

} ∪ fī ∪ x. The fifth line holds due to the law of total probability.
Similarly, we can prove that fni

is also statistically independent of fī.
Therefore Pr[f = α,x = β] = Pr[fni

= αi] Pr[fī = αī,x = β] = Pr[fni
=

αi] Pr[fī = αī] Pr[x = β] = Pr[f = α] Pr[x = β].

We complete the proof.

If for 1 ≤ i ≤ |Od|, it holds that ni ∈ Od and perf(ni) \
⋃
j>i supp(nj) 6= ∅, we can

apply Reduction Rule 1 for |Od| times to conclude the security (or uniformity) of Od. This
is a weaker condition than the straightforward method. Below is an example.

Example 2. Let the set of secret variables be {a}, the set of shares be {a1, a2}, the set of
fresh masks be {r1, r2}, and the set of observation functions be f = {fn1 = r1 +a1r2, fn2 =
a1 + r2, fn3 = a2}. It is easy to obtain that perf(n1) = {r1}, perf(n2) = {a1, r2}, and
perf(n3) = {a1}. First, since r1 ∈ perf(n1) and r1 /∈ supp(n2, n3), n1 can be removed
from f , i.e., f is reduced to {fn2 , fn3}. Next, with r2 ∈ perf(n2) and r2 /∈ supp(n3), n2 is
removed. And in one more step, n3 is also removed.

Note that Reduction Rule 1 aligns with the concept of OPT rule (or so-called optimistic
sampling rule) of maskVerif [BBD+15, BBC+19]. maskVerif utilizes expression substitution
to eliminate occurrences of secret variables. Consider two secret inputs a, b and their
corresponding shares a1, b1, a2, b2 and a computation a2b2. maskVerif will regard a, b, a1, b1
as variables while a2, b2 are expressions defined over (a, b, a1, b1), i.e., a2 := a+ a1, b2 :=
b+b1. So the computation a2b2 is expressed as (a+a1)(b+b1). We can see that a2 = a+a1
utilizes a fresh mask a1 (not used by b1), ensuring that a2 has the same distribution as
a1. Therefore, it is safe to substitute a+ a1 with a1 in expression (a+ a1)(b+ b1). After
substitution, the distribution of a1(b+ b1) remains unchanged from the original expression.
The same applies to substituting b+b1 with b1. Ultimately, the computation (a+a1)(b+b1),
which initially includes secret inputs a, b, is reduced to an expression a1b1 that contains
no secret inputs. While maskVerif achieves this substitution using imperative graphs, we
employ similar techniques through the data structures outlined in subsection 3.1. However,
we could not conclude that a2b2 is secure through Reduction Rule 1 since it has no perfect
masks. This also motivates the introduction of Reduction Rule 2.

A more apt example illustrating the difference between rule OPT and Reduction Rule
1 would involve verifying a2 + b2. Due to the bijection between a1 (or b1) and a2 + b2,
maskVerif would simplify this expression to a1 (or b1), which contains no secret inputs,
whereas Reduction Rule 1 identifies a1 and b1 as the perfect masks of a2 + b2, thereby
concluding its security.

While Reduction Rule 1 reduces the size of Od, we now introduce a Reduction Rule
which reduces the size of x.

Let xI be the set of secret variables all shares of which have been used by f , i.e.,
xI = {xi|Sh(xi) ⊆ nisupp(Od), 1 ≤ i ≤ |x|} and xĪ = x\xI . We call xI secret-dependent



Feng Zhou, Hua Chen, Limin Fan 563

variables, while variables in xĪ are secret-independent variables. Then Reduction Rule 2
holds.

Reduction Rule 2. Given a d-th order observation set Od, Od is statistically independent
of x if and only if Od is statistically independent of xI .

Intuitively, Od does not use all shares of xĪ , so it is statistically independent of
xĪ . However it is not sufficient to prove the independence between Od and x with Od
statistically independent of xI and xĪ respectively.

Proof. Let I be the set of index of variables in xI and Ī be {1, · · · , |x|} \ I.

=⇒ We have pf ,xI
(α,βI) =

∑
βĪ
pf ,xI ,xĪ

(α,βI ,βĪ) = pf (α)(
∑
βĪ
pxI ,xĪ

(βI ,βĪ)) =
pf (α) pxI

(βI). Hence, Od is statistically independent of xI .

⇐= Let sI be the set {xij |xi ∈ xI , 1 ≤ j ≤ d}, and sĪ be the set Sh(xĪ) ∩ nisupp(Od).
Since for all xi ∈ xI , the last share xi,d+1 could be viewed as a function defined over
{xi, xi1, · · · , xid}, i.e., xi,d+1 = xi ⊕

⊕d
i=1 xij , then f can be seen as a multi-output

boolean function defined over variables xI ] sI ] sĪ ] r, i.e., f(xI , sI , sĪ , r).
Note that all variables in sI ] sĪ ] r are independently distributed random variables,
then the following holds.

f is statistically independent of xI .

⇐⇒ ∀(α(1),α(2)) ∈ (GF|f |2 )2,@(β(1),β(2)) ∈ (GF|xI |
2 )2 satisfying β(1) 6= β(2),

such that Pr[f(β(1), sI , sĪ , r) = α(1)] 6= Pr[f(β(2), sI , sĪ , r) = α(2)]

=⇒ ∀(α(1),α(2)) ∈ (GF|f |2 )2,@(β(1),β(2)) ∈ (GF|x|2 )2, satisfying β(1) 6= β(2),

such that Pr[f(β(1)
I , sI , sĪ , r) = α(1)] 6= Pr[f(β(2)

I , sI , sĪ , r) = α(2)]
⇐⇒ f is statistically independent of x.

The implies can be easily verified by proof of contradiction.

Below is an example of applications of Reduction Rule 2. It should be noted this
observation function set cannot be reduced by Reduction Rule 1.

Example 3. Let the secret variable set be {a, b, c}, the shares be {a1, a2, b1, b2, c1, c2}, and
the observation function set be {fn1 = a2b1, fn2 = a2c2, fn3 = b1c2}. Then nisupp(f) =
{a2, b1, c2}. Only one share of a, b, c appears in f . Since xI is empty, this observation
function set is secure according to the rule 2.

Reduction Rule 2 shares similarities with checking the non-interference property (NI)
of an observation set, or verifying the non-completeness property in Threshold Imple-
mentations. However, NI mandates at most d shares of all secret variables occur in the
expression, whereas Reduction Rule 2 allows the presence of secret variables whose every
share appears in the observation set.

Algorithm 1 presents the reduction algorithm based on the above Reduction Rules.
The function ReduceF(Od) implements Reduction Rule 1. It attempts to find a gate

n that uses a fresh mask not used by other gates (line 3). Such gate n is then removed
from Od. The resulting set Od \ {n} is further reduced by rule 1 in line 4.

The function ReduceX(Od,x) implements the reduction of the secret variable set. It
adds the secret variable, all shares of which have been used by Od, to xI and returns the
secret-dependent variables set xI .



564 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

Algorithm 1 Reduction Algorithm
1: function ReduceF(Od) . Reduction Rule 1
2: for all ni ∈ Od do
3: if perf(ni) \ supp(Od \ {ni}) 6= ∅ then
4: return ReduceF(Od \ {ni})
5: end if
6: end for
7: return Od
8: end function
9: function ReduceX(Od,x) . Reduction Rule 2

10: xI ← ∅
11: for all x ∈ x do
12: if Sh(x) \ nisupp(Od) = ∅ then
13: xI .add(x)
14: end if
15: end for
16: return xI
17: end function

4 The Verification Tool - Prover
In this section, we introduce the formal verification tool, Prover, which is a modification of
SILVER designed to efficiently verify the security of masked implementations.

4.1 Variable Ordering
The complexity of computing Pr[fλ = 1,xγ = 1] is O(N(fλ) · N(xγ)) [Mil98], where
N(f) denotes the number of nodes in the ROBDD representing the boolean function f .
Therefore the complexity of checking statistical independence between f and x will be
O((
∑
λ 6=0N(fλ)) · (

∑
γ 6=0N(xγ))). SILVER does not impose any restrictions on variable

ordering when constructing ROBDDs. However, optimizing the variable ordering can
significantly reduce

∑
γ 6=0N(xγ), thereby improving performance.

Specifically, SILVER determines variable ordering based on annotations in the internal
netlist file (or internal representation of the circuit graph), which are provided by its
Verilog parser. The opening lines of the internal netlist file specify the input variables of
the circuit. Each of these lines declares an input variable, and SILVER assigns the i-th
BDD variable to the input variable listed on the i-th line. For instance, in a 2-shared
Verilog implementation of the AES S-box with secret inputs {a, b, · · · , h}. The variables
are typically declared in the following order in the internal representation file produced
by the Verilog parser: a1 ≺ b1 ≺ · · · ≺ h1 ≺ a2 ≺ · · · ≺ h2. SILVER assigns these input
variables as BDD variables in exactly the same sequential order.

As discussed in [HSSW10], this ordering is worst for computing a boolean function of
the form (a1 ⊕ a2) ∧ · · · ∧ (h1 ⊕ h2) (the same form as xγ). When the hamming weight
HW (γ) of γ is u, the ROBDD representing xγ would contain 3 · 2u − 1 nodes. Suppose
there are m input variables, then

∑
γ 6=0N(xγ) =

∑m
u=1

(
m
u

)
(3 · 2u − 1) = 3m+1 − 2m − 2.

It is established in [HSSW10] that an optimal ordering would be a1 ≺ a2 ≺ b1 ≺ b2 ≺
· · · ≺ h1 ≺ h2. With this optimal ordering, when HW (γ) = u, the number of nodes in the
corresponding ROBDD will be linear in u, i.e., 3u+ 2. Using the optimal ordering reduces
the size of xγ from exponential complexity to linear complexity in the hamming weight
of γ. And the term

∑
γ 6=0N(xγ) is simplified to

∑m
u=1

(
m
u

)
(3u+ 2) = (3m+ 4)2m−1 − 2,

where m is the number of input variables.



Feng Zhou, Hua Chen, Limin Fan 565

Algorithm 2 Improved d-th order Standard and Glitch-Extended Probing Security
Verification Algorithm based on Reduction Rules and ROBDDs
Input: x, Sh(x), r,N , E , op, f, b
Output: observation set R which leaks information about x

1: function VerifyInc(x, Sh(x), r,N , E , op, f, b)
2: for all n ∈ N do fn ← ComputeBDDFunction(n) . According to Equation 1
3: end for
4: P ← {n.lft|op(n) ∈ {reg, out}} . Positions in glitch-extended probing model
5: if b then P ← {n|op(n) ∈ {in, ref,¬,∧,∨,∧,∨,⊕,⊕}} . Positions in standard

probing model
6: end if
7: d′ ← 1
8: V ← {∅}
9: while true do

10: for all R ⊆ P with |R| = d′ and the size of Od′ =
⋃
n∈ROn in a descending

order do
11: Od′ ← ReduceF(Od′) . Reducing Od′ using Reduction Rule 1
12: if b and |Od′ | 6= d′ or Od′ = ∅ then continue
13: end if
14: xI ← ReduceX(Od′ ,x), t← |xI | . Reducing x using Reduction Rule 2
15: if t = 0 then continue
16: end if
17: for all O ∈ V do
18: if Od′ ⊆ O then continue
19: end if
20: end for
21: f ←

⋃
n∈Od′

fn, p← |f |
22: for all γ ∈ [1, 2t − 1] do
23: xγ ← 1
24: for all 1 ≤ i ≤ t do
25: xγ ← xγ ∧ xγi

i . xi is the i-th element of xI
26: end for
27: end for
28: for λ = 2p − 1 down to 1 do
29: fλ ← 1
30: for all 1 ≤ i ≤ p do
31: fλ ← fλ ∧ f

λp−i

i

32: end for
33: for all γ ∈ [1, 2t − 1] do
34: if Pr[fλ = 1, xγ = 1] 6= Pr[fλ = 1] Pr[xγ = 1] then
35: return R
36: end if
37: end for
38: if b then break. Optimization for verifying standard probing security
39: end if
40: end for
41: V.add(Od′)
42: end for
43: d′ ← d′ + 1
44: end while
45: end function



566 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

However, there is another method to further reduce the size of the ROBDD representa-
tion of xγ . The concept behind this approach is quite similar to how variables are treated
as support variables in the computation of supp(n) and nisupp(n). Instead of declaring
a1 and a2 as ROBDD variables and computing the secret variable a as a1 + a2, we could
declare a and a1 as ROBDD variables and compute a2 as a + a1. The same approach
is applied to b, · · · , h and their respective shares. In this scenario, the variable ordering
would be a ≺ b ≺ · · · ≺ h ≺ a1 ≺ b1 ≺ · · · ≺ h1. When HW (γ) = u, the number of
nodes in the corresponding ROBDD will be u+ 2. The term

∑
γ 6=0N(xγ) is simplified

to
∑m
u=1

(
m
u

)
(u+ 2) = (m+ 4)2m−1 − 2, which represents approximately one-third of the

optimal case.
When m is eight, the term

∑
γ 6=0N(xγ) under the first two variable ordering strategies

will be 19425 and 3582, respectively, which is approximately 12.5 times and 2.3 times
larger than the third case, which is 1552.

However, we can not determine whether N(fλ) grows larger or smaller compared
to the original ordering in SILVER, because fλ is not as straightforward as a boolean
function like xγ . Additionally, analyzing xγ becomes more complex when x ∈ x has more
than two shares. In fact, improving the variable ordering of ROBDDs is NP-complete
[BW96]. Therefore, our objective is not to find a universally optimal ordering that suits
every implementation. Instead, we aim to identify variable orderings that prove efficient
in practical scenarios. To this end, we conducted an experiment to compare SILVER’s
performance under different variable orderings, with detailed results presented in Section 5.
The choice of variable ordering is configurable as a user option in Prover. As a side note,
the variable ordering of random inputs follows after the secrets and their shares. However,
we did not specifically optimize the ordering of these variables.

4.2 Verification of Standard and Glitch-Extended Probing Security
Now, let us delve into the verification algorithm for standard and glitch-extended probing
security. The overall algorithm is outlined in Algorithm 2. The fundamental idea behind
verifying both security notions is to initially reduce the size of Od and then employ
ROBDDs to check the statistical independence between the reduced Od and x.

This algorithm takes the circuit C and a boolean value b as inputs and outputs a set
of gates R with leakage about the secret variables x. As explained in section 2.3, the
inputs of the circuit are Sh(x) and r, and the information about the gates is stored in
(N , E , op, f). If b is True, then the algorithm verifies standard probing security. Otherwise,
it verifies glitch-extended probing security.

First, Prover computes the ROBDD representation of all the observation functions
{fn|n ∈ N} (line 2). Based on the value of b, i.e., the selected security model, it chooses
the set of positions P to be verified in the circuit.

Then, the verification starts with d = 1 (line 7). First, Prover utilizes Reduction Rule 1
to reduce the size of Od (line 11). If Reduction Rule 1 fails to prove the security of Od,
Prover reduces the secret variable set (line 14). If there is no secret-dependent variable,
then it is secure, and no further verification is needed (line 15). Note that it is better to
apply Reduction Rule 2 after applying Reduction Rule 1 because after Reduction Rule 1 is
applied, the size of the reduced Od is much smaller and depends on fewer variables.

Notably, we employ a strategy that could reduce the number of times to check statistical
independence by ROBDDs. During the verification, Prover stores the Od that has been
verified to be secure by ROBDD into a list V. Whenever Reduction Rule 1 and 2 fails to
verify Od is secure, Prover compares it to the elements in V. If the Od under verification
happens to be a subset of a verified secure observation set, then it is secure and needs
no further verification. This avoids the time-consuming process by ROBDDs. To employ
the subset strategy, we sort the observation set by size in descending order and start the



Feng Zhou, Hua Chen, Limin Fan 567

verification with the larger sets. This strategy is implemented in lines 8, 10, 18, and 41 of
Algorithm 2.

One might assume that storing verified secure observation sets requires substantial
RAM usage. However, we store only the corresponding gate number n of verified functions
instead of their BDD representations. Each observation function’s gate number n is a
unique 4-byte integer, and the observation set Od exclusively comprises these gate numbers.

Finally, if Rule 2 fails to return an empty set, it is necessary to invoke ROBDDs
to verify the probability equations (lines 21 to 40). If Equation 2 does not hold, then
leakage is detected. In this case, Prover returns the set of registers whose input wires leak
information about x.

However, there is a key difference in the observation sets between the standard and
glitch-extended probing model, which could lead to some optimizations (lines 12 and 38) in
the verification of the standard probing security. Note that a d-th order observation set Od
under glitch-extended probing may have an arbitrary size greater than or equal to d, while
Od in the standard probing model is always of size d. Normally, Od needs to be reduced
to an empty set to avoid the statistical independence check via ROBDDs. However, since
d′ increases from 1 in Algorithm 2, all sets of size smaller than the current d′ have been
verified in the previous iteration when verifying standard probing security. As a result,
when the size of Od′ is reduced to a size less than d′, the remaining set has already been
checked in the previous iteration and needs no further verification (line 12 in Algorithm
2). If after reduction, the size of Od′ is still d′, then ROBDDs are expected to be used
to check whether Equation 2 holds for all λ ∈ [1, 2d − 1]. Again, for λ s.t. HW (λ) < d,
the independence checking has already been performed or implied by Reduction Rules
in previous iterations. Thus, Prover only needs to check whether Equation 2 holds when
HW (λ) = d′ (line 38).

4.3 Verification of Uniformity
Uniformity (or uniform sharing) is an important property to maintain in Threshold
Implementation.

Definition 6 (Uniform Sharing[KSM20]). Let y be a set of binary random variable
and Sh(y) its corresponding Boolean sharing. Each variable yi ∈ y is split into d + 1
shares yij (1 ≤ j ≤ d + 1). Then Sh(y) is a uniform sharing of y iff ∀α,β, Equation 6
holds.

Pr[Sh(y) = α|y = β] =


1

2|y|d
if α is a valid sharing for β

0 else
(6)

In the definition of uniformity, valid sharing means that for 1 ≤ i ≤ |y|, βi =
⊕d+1

j=1 αij
with 1 ≤ j ≤ d+ 1.

In [KSM20], Lemma 1 (Lemma 4 in [KSM20]) was employed to verify the uniformity of
the output sharing Sh(y) = {yij |yi =

⊕d+1
j=1 yij , 1 ≤ i ≤ |y|, 1 ≤ j ≤ d+ 1} for a Boolean

function f with multiple outputs y.

Lemma 1. The output sharing Sh(y) of a circuit C is uniform. ⇐⇒ Any selection of
up to |y| · d output shares is balanced excluding the cases where all d + 1 shares of the
same output are involved in the selection. ⇐⇒ Pr[

⊕|y|
i=1 λ

(i)y
(i)
s = 1] = 1

2 holds for all
λ(i) ∈ GFd+1

2 (1 ≤ i ≤ |y|) with 0 ≤ HW (λ(i)) ≤ d where y(i)
s denotes for Sh(yi) and λ(i)s

are not all zeros.

The second iff in Lemma 1 is not explicitly demonstrated in [KSM20]. However, it can
be readily inferred from the following XOR Lemma in [Fri92], thus we omit its proof here.



568 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

Lemma 2 (XOR Lemma). A set of random variables f = {f0, f1, · · · , fn−1} follows an
independent uniform distribution if and only if the following equation holds.

∀λ ∈ [1, 2n − 1],Pr[λf = 1] = 1
2 (7)

The second iff in Lemma 1 constitutes the actual verification approach adopted by
SILVER. λ(i) selects at most d shares of yi, and all shares selected by these λ(i)s are
XORed to form a single-output function f =

⊕|y|
i=1 λ

(i)y
(i)
s . To verify the uniformity

of a (d + 1)-shared boolean function with an n-bit output, SILVER needs to construct
(2d+1−1)n−1 ROBDDs for such single-output function f and check whether f is balanced.
For example, in the case of a 3-shared boolean function with 8-bit outputs, the number of
times ROBDDs need to be constructed becomes 78 − 1 ≈ 222.5. Since the ROBDDs of the
output functions of circuit C contain more nodes than the internal functions in C, the
XOR operations on these ROBDDs become less efficient. Consequently, SILVER may not
be able to verify the uniformity of several paired second-order masked S-boxes within a
24-hour time frame.

We now incorporate Reduction Rule 1 into the uniformity check to enhance its efficiency.
As analyzed in Section 3.2, Reduction Rule 1 can be utilized to verify the uniformity of an
observation set or reduce the uniformity (or security) to a smaller observation set. We can
regard the selection of |y| · d output shares, excluding cases where all d+ 1 shares of the
same output are involved in the selection, as an observation set Od and apply Reduction
Rule 1 to it. If all such Od can be reduced to an empty set, then the output sharing is
uniform. If any Od cannot be reduced to an empty set, then the XOR Lemma can be used
to verify the uniformity of the remaining observation functions in Od.

Algorithm 3 Algorithm for Uniformity Check
Input: Sh(y)
Output: True(False): the output sharing is (not) uniform

1: function CheckUniformity(Sh(y))
2: for i from 1 to |y| do
3: Yi ← ∅
4: for j from 1 to d+ 1 do
5: Yi ← Yi ∪ (Sh(yi) \ {yij})
6: end for
7: end for
8: for f ∈ Y1 × Y2 × · · · × Y|y| do
9: O ← the set of nodes corresponding to f

10: O′ ← ReduceF(O)
11: f ′ ←

⋃
n∈O′ fn . The set of functions to compute output probability

12: for λ from 1 to 2|f ′| − 1 do
13: if Pr[λf ′ = 1] 6= 1

2 then return False
14: end if
15: end for
16: end for
17: return True
18: end function

The improved algorithm to check uniformity is shown in Algorithm 3. It first generates
all possible combinations of |y| · d output shares, excluding cases where all d+ 1 shares
of the same output are involved in the combination. This corresponds to the Cartesian
product of Yi where 1 ≤ i ≤ |y|. Then, ReduceF is called to reduce the size of each
element f in Y1 ×Y2 × · · · × Y|y|. If the corresponding observation set O is reduced to an



Feng Zhou, Hua Chen, Limin Fan 569

empty set, then f is uniformly distributed. Otherwise, Prover verifies whether Equation 7
holds to determine if f is uniformly distributed.

The efficiency of this algorithm depends on how much smaller could O be reduced. In
the best case, all O are reduced to an empty set. In this scenario, the function ReduceF
is called (d+ 1)|y| times, and no new ROBDD constructions are required. In the worst
case, Reduction Rule is not applied at all, resulting in the construction of ROBDDs for
(d+ 1)|y|(2|y|·d − 1) times, which is comparable to (2d+1 − 1)|y| − 1. However, the worst
case is unlikely to happen because many schemes use fresh randomness to maintain the
uniformity property.

Nevertheless, we discovered that the uniformity check of SILVER is extremely efficient
when the outputs are 2-shared or the implementation did not utilize fresh randomness, as
SILVER has optimized the order of constructing ROBDDs to hit the cache more often. In
Prover, we utilize this optimization from SILVER and apply Algorithm 3 only when this
optimization is not applicable. This situation arises when the number of output shares
exceeds 2 and at least one of the outputs have perfect masks.

5 Experiments and Evaluations
In this section, we have collected various open-sourced masked S-box implementations2

and standard gadgets3 as benchmarks for evaluations of the proposed methods in this
paper and the comparison with state-of-the-art tools. Details about these benchmarks can
be found at subsection 5.1.

We present three experiments in this section. The first experiment examined the
impact of different variable orderings on SILVER. The second experiment compared
the performance of CocoAlma, maskVerif, SILVER, and Prover in verifying S-boxes.
IronMask was excluded since it encounters difficulties with these. Specifically, IronMask
seems to require that the number of sensitive inputs in the masked implementations be
2 or fewer; exceeding this threshold leads to assertion failures or segmentation faults.
The third experiment evaluated the performance of IronMask, maskVerif, SILVER, and
Prover in verifying standard gadgets. CocoAlma was excluded since we could not find
open-sourced benchmarks (Verilog implementations) for CocoAlma. The results of the
three experiments are shown in subsection 5.2, 5.3, and 5.4, respectively. All evaluation
benchmarks, scripts, and tool source code are public available under an open-source license4.
All experiments were performed on an Ubuntu 22.04 TLS virtual machine running on an
Intel Core i7-6700 processor clocked at 3.40 GHz. The virtual machine was equipped with
16 GB of memory and 8 logical processor cores. SILVER and Prover utilized all 8 cores,
whereas IronMask, CocoAlma and maskVerif only used 1 core.

Finally, we provide a detailed analysis on the insecure S-boxes appeared in our experi-
ments in subsection 5.5.

5.1 Benchmarks
Benchmarks of S-boxes. Table 2 presents details about the masked S-box implementa-
tions we collected. It includes information on the reference, abbreviations for the scheme,
the number of secret variables |x|, the number of shares |Sh(x)|, the expected security order
d, the number of clock cycles required for computation, the count of fresh masks, the total
number of gates |N |, and the number of probing positions under glitch-extended probing
model |Pg|. For Prover and SILVER, the verification complexity under standard probing

2Public available at https://github.com/Lucien98/coco-alma_evaluation/tree/main/examples
3From https://github.com/CryptoExperts/IronMask/tree/main/gadgets
4Evaluation benchmarks and scripts for CocoAlma, maskVerif, IronMask, Prover and SILVER are

public available at coco-alma_evaluation, maskVerif_evaluation, IronMask and prover, respectively.

https://github.com/Lucien98/coco-alma_evaluation/tree/main/examples
https://github.com/CryptoExperts/IronMask/tree/main/gadgets
https://github.com/Lucien98/coco-alma_evaluation
https://github.com/Lucien98/maskVerif_evaluation
https://github.com/Lucien98/IronMask
https://github.com/Lucien98/prover


570 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

model is
∑d
i=1
(|N |−|Pg|

i

)
for a d-th order secure implementation while the complexity

under glitch-extended probing model is
∑d
i=1
(|Pg|
i

)
.

In the abbreviation of a scheme, the subscript stands for the expected security order
d. The abbreviations for implementations using the techniques from [RBN+15a] and
[GMK16] are CMS and DOM. Implementations from [SM21a] (or [SM21b]) that utilize
no (or almost no) fresh randomness are denoted as NF1 (or NF2), while 1F indicates
the use of one bit of fresh randomness. The INF1 implementation of PRINCE refers
specifically to the inverse of the PRINCE S-box. The 4F1 implementation of AES S-box,
detailed in [YCW+24], incorporates 4 bit fresh masks and 8-bit guards from neighboring
S-boxes. Threshold implementations are marked as TI. The symbol Ld (with only a
subscript) stands for the low-latency Keccak implementations in [ZSS+21], while the Lcd
implementations (with subscript and superscript) come from [BDMS22] where d denotes
the expected security order and c+ 1 indicates the number of clock cycles to complete the
computation. LL denotes low-latency and low-randomness implementations as proposed in
[SDM23]. Implementations marked with a star in their abbreviations are paired-versions
of masked S-boxes. LL2 and LL∗2 implementations of SKINNY were excluded from our
benchmarks since these implementations failed to encrypt correctly in our simulation.

Table 2: Information about masked S-box implementations
Reference Impl. |x| Sh(x) d Cycl. #ref |N| |Pg|

AES

[SM21a] 1F1 8 2 1 6 1 967 176
[YCW+24] 4F1 8 2 1 6 12 1004 188
[DRB+16] CMS1 8 2 1 8 54 938 192
[GMK17] DOM1 8 2 1 8 18 884 240
[SM21a] NF1 8 2 1 6 0 1188 240
[UHA17] TI1 8 2 1 3 64 776 112

Keccak

[GSM17] DOM1 5 2 1 2 5 121 30
[GSM17] DOM′1 5 2 1 2 0 111 30
[GSM17] DOM2 5 3 2 2 15 249 60
[GSM17] DOM3 5 4 3 2 30 462 100
[ZSS+21] L1 5 2 1 1 5 85 20
[ZSS+21] L2 5 3 2 1 15 180 45
[ZSS+21] L3 5 4 3 1 30 310 80
[SM21b] NF1 5 2 1 2 0 96 30
[SM21b] NF2 5 3 2 2 0 188 60

Midori

[BDMS22] L3
2 4 3 2 4 51 444 91

[BDMS22] L4
2 4 3 2 5 24 277 84

[BDMS22] L3
2∗ 8 3 2 4 90 864 170

[SDM23] LL2 4 3 2 2 104 1189 108
[SDM23] LL∗2 8 3 2 2 192 1918 216
[SM21a] NF1 4 2 1 2 0 204 36
[SM21b] NF2 4 3 2 5 8 328 102

PRESENT

[BDMS22] L3
2 4 3 2 4 53 428 92

[BDMS22] L5
2 4 3 2 6 24 299 96

[BDMS22] L3
2∗ 8 3 2 4 90 824 168

[SM21a] NF1 4 2 1 2 0 178 36
[SM21b] NF2 4 3 2 5 8 326 102
[EGMP17] TINU1 4 3 1 2 0 161 24
[EGMP17] TIU1 4 3 1 2 0 177 24
[PMK+11] TIU′1 4 3 1 2 0 377 24

PRINCE

[SM21a] INF1 4 2 1 2 0 250 40
[BDMS22] L4

2 4 3 2 5 52 497 109
[BDMS22] L4

2′
4 3 2 5 53 498 109

[BDMS22] L6
2 4 3 2 7 38 378 120

[SDM23] LL2 4 3 2 2 116 1249 120
[SDM23] LL∗2 8 3 2 2 216 2140 240
[SM21a] NF1 4 2 1 2 0 211 40
[SM21b] NF2 4 3 2 8 16 378 138
[MS16] TI1 4 3 1 3 0 150 36

SKINNY

[BJK+20] CMS1 8 2 1 5 0 192 96
[BDMS22] L3

2 4 3 2 4 36 292 76
[BDMS22] L4

2 4 3 2 5 32 272 84
[BDMS22] L3

2∗ 8 3 2 4 64 568 144
[SM21b] NF2 4 3 2 4 8 202 72
[BJK+16] TI1 8 3 1 4 0 240 96



Feng Zhou, Hua Chen, Limin Fan 571

Benchmarks of Standard Gadgets. We considered the following gadgets: the
ISW multiplication [ISW03] and nlogn refresh [BCPZ16]. The benchmarks for these
gadgets were sourced from IronMask’s GitHub repository. This repository includes a script
to convert benchmarks for IronMask into formats compatible with SILVER and Prover.
Additionally, we wrote a script that converts benchmarks for SILVER and Prover into
formats suitable for maskVerif. Unfortunately, we did not find suitable benchmarks for
CocoAlma, so it is excluded from this experiment. Furthermore, 3-shared and 5-shared
nlogn refresh gadgets are not provided in IronMask’s GitHub repository, so these were also
excluded.

The detailed information about these gadgets is shown in Table 3. It includes the
number of shares |Sh(x)|, the expected security order under standard probing model
ds, the expected security ordering under glitch-extended probing model dg, the count of
fresh masks (#ref), the number of gates |N |, and the number of probing positions under
glitch-extended probing model (Pg). Note that the ISW multiplication gadgets provided by
IronMask’s Github repository do not use registers to stop propagation of glitches, meaning
none of them is glitch-extended probing secure at any order dg ≥ 1.

Table 3: Information about standard gadgets
Gadgets |Sh(x)| ds dg #ref |N | |Pg|

ISW
mult

[ISW03]

2 1 0 1 15 2
3 2 0 3 33 3
4 3 0 6 58 4
5 4 0 10 90 5
6 5 0 15 129 6

refresh
nlogn

[BCPZ16]

2 1 1 1 7 2
4 3 3 6 26 4
6 5 5 12 54 12
7 6 6 15 64 12

5.2 Evaluations for Different Variable Orderings
In the first experiment, we configured SILVER with different variable orderings to verify
the standard probing security of the benchmarks. We opted not to extend this comparison
to verifying glitch-extended probing security and uniformity, as their verification would
take more than 24 hours on several benchmarks.

Note that in this experiment we only modified the variable orderings of SILVER,
i.e., the reduction rules were not employed, to show the influence of different variable
orderings. The results are shown in Table 4. There are 6 different columns in Table 4. The
first column represents the names of the verified implementations. Columns 2-4 are the
verification result and time of SILVER using its original ordering strategy, ordering-1, and
ordering-2 strategies under standard probing model, respectively. The symbol Xd indicates
this implementation is secure at order d. The symbol d indicates this implementation
is not secure at order d. Ordering 1 refers to the optimal variable ordering mentioned in
[HSSW10], while ordering 2 declares secret variables in x as ROBDD variables. Columns
5-6 shows the speedup comparing Prover with SILVER, namely the quotient of columns
2/2 and columns 3/4.

In the 45 benchmarks, the optimal ordering outperforms the original ordering in 37
cases, while the second ordering outperforms in 44 cases (marked with bold font in the
speedup columns). There are only six cases where the optimal ordering is less efficient
than the original one (the speedup is less than 1.0), but it only takes less than one second
to verify them. There is only one case where the second ordering does not outperform the
original one, and the performance of the second ordering is comparable to the original one
in this benchmark.



572 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

Table 4: Comparison between different variables ordering in SILVER over verification of
standard probing security

Impl. Original Ordering 1 Ordering 2
Speedup

Impl. Original Ordering 1 Ordering 2
Speedup

ord. 1 ord. 2 ord. 1 ord. 2

AES SKINNY

1F1 X1 [ 5.3 s] X1 [ 2.8 s] X1 [ 1.0 s] 1.89 5.3 CMS1 X1 [ 1.3 s] X1 [ 94 ms] X1 [ 74 ms] 13 17
4F1 X1 [ 13 s] X1 [ 4.6 s] X1 [ 1.1 s] 2.83 11 L3

2 X2 [ 5.0 s] X2 [ 3.4 s] X2 [ 3.5 s] 1.47 1.43
CMS1 X1 [ 14 s] X1 [ 5.8 s] X1 [ 1.00 s] 2.41 14 L4

2 X2 [ 4.3 s] X2 [ 2.8 s] X2 [ 3.0 s] 1.54 1.43
DOM1 X1 [ 12 s] X1 [ 4.2 s] X1 [ 0.67 s] 2.86 17 L3

2∗ X2 [ 27 min] X2 [1.3 min] X2 [1.9 min] 20 14
NF1 X1 [ 5.7 s] X1 [ 2.2 s] X1 [ 0.77 s] 2.59 7.4 NF2 X2 [ 1.5 s] X2 [ 0.86 s] X2 [ 0.73 s] 1.74 2.05
TI1 X1 [ 10 s] X1 [ 4.1 s] X1 [ 0.81 s] 2.44 12 TI1 X1 [1.5 min] X1 [ 0.44 s] X1 [ 1.5 s] 204 60

Keccak PRINCE

DOM1 X1 [ 52 ms] X1 [ 66 ms] X1 [ 45 ms] 0.79 1.16 INF1 X1 [ 58 ms] X1 [ 1.0 s] X1 [ 55 ms] 0.06 1.05
DOM′1 X1 [ 54 ms] X1 [ 0.23 s] X1 [ 42 ms] 0.23 1.29 L4

2 X1 [ 50 s] X1 [ 49 s] X1 [ 44 s] 1.02 1.14
DOM2 X2 [ 4.7 s] X2 [ 1.6 s] X2 [ 1.3 s] 2.94 3.62 L4

2′
X2 [8.1 min] X2 [6.3 min] X2 [6.0 min] 1.29 1.35

DOM3 X3 [ 1.1 h] X3 [ 19 min] X3 [ 16 min] 3.47 4.13 L6
2 X2 [7.2 min] X2 [6.9 min] X2 [6.3 min] 1.04 1.14

L1 X1 [ 46 ms] X1 [ 40 ms] X1 [ 38 ms] 1.15 1.21 LL2 X2 [2.5 min] X2 [2.1 min] X2 [2.5 min] 1.19 1.0
L2 X2 [ 0.66 s] X2 [ 0.72 s] X2 [ 0.46 s] 0.92 1.43 LL∗2 X2 [ 8.5 h] X2 [ 30 min] X2 [ 56 min] 17 9.11
L3 X3 [3.2 min] X3 [3.2 min] X3 [2.4 min] 1.0 1.33 NF1 X1 [ 55 ms] X1 [ 0.83 s] X1 [ 54 ms] 0.07 1.02
NF1 X1 [ 51 ms] X1 [ 41 ms] X1 [ 43 ms] 1.24 1.19 NF2 X2 [ 41 s] X2 [ 32 s] X2 [ 26 s] 1.28 1.58
NF2 X2 [ 1.1 s] X2 [ 0.91 s] X2 [ 0.68 s] 1.21 1.62 TI1 X1 [ 66 ms] X1 [ 52 ms] X1 [ 49 ms] 1.27 1.35

PRESENT Midori

L3
2 X2 [ 21 s] X2 [ 14 s] X2 [ 15 s] 1.5 1.4 L3

2 X2 [ 16 s] X2 [ 9.3 s] X2 [ 9.7 s] 1.72 1.65
L5

2 X2 [ 7.6 s] X2 [ 4.5 s] X2 [ 4.5 s] 1.69 1.69 L4
2 X2 [ 6.1 s] X2 [ 3.4 s] X2 [ 3.6 s] 1.79 1.69

L3
2∗ X2 [ 2.6 h] X2 [5.0 min] X2 [9.0 min] 31 17 L4

2∗ X2 [ 2.5 h] X2 [4.2 min] X2 [5.5 min] 35 27
NF1 X1 [ 75 ms] X1 [ 0.16 s] X1 [ 66 ms] 0.47 1.14 LL2 X2 [2.1 min] X2 [1.8 min] X2 [2.0 min] 1.17 1.05
NF2 X2 [ 4.4 s] X2 [ 2.6 s] X2 [ 1.7 s] 1.69 2.59 LL∗2 X2 [ 7.2 h] X2 [ 23 min] X2 [ 39 min] 18 11
TINU1 1 [ 1.3 s] 1 [ 55 ms] 1 [ 51 ms] 23 25 NF1 X1 [ 58 ms] X1 [ 55 ms] X1 [ 55 ms] 1.05 1.05
TIU1 X1 [ 0.21 s] X1 [ 0.21 s] X1 [ 61 ms] 1.0 3.44 NF2 X2 [ 4.2 s] X2 [ 2.7 s] X2 [ 1.6 s] 1.56 2.62
TIU′1 X1 [ 0.14 s] X1 [ 0.12 s] X1 [ 91 ms] 1.17 1.54

Due to these findings, we equipped Prover with the ordering-2 strategy in the second
experiment.

5.3 Comparison with State-Of-The-Art Tools Over S-boxes
In our second experiment, we compared Prover to three state-of-the-art tools: CocoAlma
[HB21], maskVerif [BBC+19] and SILVER [KSM20] over S-box implementations.

Table 5 presents the verification results and time of the four tools applied to these
masked implementations. The first column lists the abbreviation of the implementation.
Columns 2-5 (6-9) show the verification results and time of CocoAlma, maskVerif, SILVER,
and Prover under standard (glitch-extended) probing model. All tools terminate upon
encountering the first detected leakage, otherwise they verify all possible observations
according to the expected security order d. Columns 10-11 are the uniformity check results
and required time of SILVER and Prover. It is noteworthy to mention that we identified
a bug in SILVER’s uniformity check: when implementing the method from Lemma 1,
SILVER failed to include cases where at least one, but not all, of λ(i)s are zeros. The
bug decreases the complexity of uniformity check from (2d+1 − 1)n − 1 to (2d+1 − 2)n,
falsely showing greater efficiency. Moreover, this bug caused SILVER to erroneously report
that the output sharing of the NF2 implementation of PRESENT S-box is uniform (the
authors of this implementation also claimed uniformity [SM21b]), whereas it is not. We
have corrected this bug in SILVER and the results in Table 5 reflect the corrected version.

The symbols Xd and d have the same meanings as described in subsection 5.2. Co-
coAlma and maskVerif suffer from false positives, where they may incorrectly categorize a
secure implementation as an insecure one. Such cases are marked with the symbol d . In
several benchmarks, SILVER exceeds the 24-hour time limit and CocoAlma encounters
memory issues. We use the symbol ?d to denote such cases, indicating that the tool
does not complete the verification, and we are unsure whether it could verify that this
implementation is d-th order secure with more allotted time and memory. The symbols
X, , and ? indicate the implementation is uniform, not uniform, or that the tool could
not verify uniformity within the time limit.



Feng Zhou, Hua Chen, Limin Fan 573

5.3.1 Comparison over Four Tools

CocoAlma and maskVerif are more efficient formal verification tools than SILVER, but
both have false positives. We now briefly introduce these two tools.

Table 5: Verification results and required time by COCO-ALMA, maskVerif, SILVER, and
Prover

Standard Probing Security Glitch-extended Probing Security Uniformity

coco-alma maskVerif SILVER Prover coco-alma maskVerif SILVER Prover SILVER Prover
[HB21] [BBC+19] [KSM20] this work [HB21] [BBC+19] [KSM20] this work [KSM20] this work

AES

1F1 1 [ 0.57 s] 1 [ 0.88 s] X1 [ 6.1 s] X1 [ 1.1 s] 1 [ 1.5 s] 1 [ 26 ms] X1 [ 26 s] X1 [ 3.9 s] [ 35 s] [ 4.6 s]
4F1 1 [ 1.1 s] 1 [ 0.21 s] X1 [ 14 s] X1 [ 1.5 s] 1 [ 1.9 s] 1 [ 56 s] X1 [ 1.3 h] X1 [9.1 min] X[ 5.9 min] X[ 9.0 s]
CMS1 X1 [ 5.3 s] X1 [ 1.6 s] X1 [ 16 s] X1 [ 0.91 s] X1 [ 7.5 s] X1 [ 0.41 s] X1 [ 4.7 h] X1 [ 1.7 s] X[ 11 min] X[ 22 s]
DOM1 X1 [ 1.8 s] X1 [ 0.54 s] X1 [ 12 s] X1 [ 0.68 s] X1 [ 12 s] X1 [ 63 ms] X1 [ 1.9 h] X1 [ 6.0 s] X[ 10 min] X[ 27 s]
NF1 1 [ 0.26 s] 1 [ 0.26 s] X1 [ 4.5 s] X1 [ 1.0 s] 1 [ 0.54 s] 1 [ 22 ms] X1 [ 18 s] X1 [ 2.5 s] [ 42 s] [ 15 s]
TI1 X1 [ 0.54 s] X1 [ 0.13 s] X1 [ 12 s] X1 [ 0.76 s] X1 [ 0.56 s] X1 [ 35 ms] ?1 [ > 24 h] X1 [ 1.6 s] ? [ > 24 h] X[ 14 min]

Keccak

DOM1 X1 [ 4.7 ms] X1 [ 2.0 ms] X1 [ 55 ms] X1 [ 72 ms] X1 [ 10 ms] X1 [2.0 ms] X1 [ 41 ms] X1 [ 0.16 s] X[ 0.13 s] X[ 0.59 s]
DOM′1 X1 [ 4.2 ms] X1 [ 3.0 ms] X1 [ 56 ms] X1 [ 80 ms] X1 [ 8.8 ms] X1 [2.0 ms] X1 [ 34 ms] X1 [ 0.11 s] [ 62 ms] [ 0.85 s]
DOM2 X2 [ 3.0 s] X2 [ 22 ms] X2 [ 3.7 s] X2 [ 0.61 s] X2 [ 0.62 s] X2 [ 27 ms] X2 [ 7.4 s] X2 [ 0.44 s] X[ 53 s] X[ 1.7 s]
DOM3 ?3 [ OoM] X3 [ 1.0 s] X3 [ 1.1 h] X3 [ 14 min] X3 [ 32 min] X3 [ 0.65 s] X3 [ 7.1 h] X3 [ 1.6 min] X[ 2.7 h] X[ 3.3 s]
L1 X1 [ 3.7 ms] X1 [ 2.0 ms] X1 [ 42 ms] X1 [ 54 ms] X1 [ 4.1 ms] X1 [1.0 ms] X1 [ 29 ms] X1 [ 0.15 s] [ 0.39 s] [ 1.6 s]
L2 X2 [ 0.70 s] X2 [ 5.0 ms] X2 [ 0.67 s] X2 [ 0.26 s] X2 [ 0.15 s] X2 [4.0 ms] X2 [ 1.6 s] X2 [ 0.32 s] [ 0.44 s] [ 0.49 s]
L3 ?3 [ OoM] X3 [ 88 ms] X3 [3.3 min] X3 [1.6 min] X3 [2.5 min] X3 [ 36 ms] X3 [ 16 min] X3 [ 14 s] [ 0.38 s] [ 0.79 s]
NF1 X1 [ 5.5 ms] X1 [ 2.0 ms] X1 [ 49 ms] X1 [ 64 ms] X1 [ 8.5 ms] X1 [2.0 ms] X1 [ 32 ms] X1 [ 94 ms] X[ 0.32 s] X[ 1.1 s]
NF2 2 [ 19 ms] X2 [ 0.12 s] X2 [ 1.3 s] X2 [ 0.30 s] 2 [ 20 ms] 2 [ 3.0 ms] X2 [ 2.2 s] X2 [ 0.36 s] X[ 3.6 s] X[ 2.5 s]

Midori

L3
2 X2 [3.7 min] X2 [ 0.29 s] X2 [ 16 s] X2 [ 4.0 s] X2 [ 12 s] X2 [ 0.12 s] X2 [ 5.4 h] X2 [ 11 s] X[ 37 s] X[ 5.6 s]

L4
2 X2 [ 36 s] X2 [ 0.11 s] X2 [ 5.8 s] X2 [ 0.99 s] X2 [ 5.9 s] X2 [ 96 ms] X2 [ 39 s] X2 [ 1.4 s] X[ 22 s] X[ 0.62 s]

L3
2∗ X2 [ 36 min] X2 [ 1.9 s] X2 [ 2.8 h] X2 [ 25 s] X2 [3.5 min] X2 [ 1.0 s] ?2 [ > 24 h] X2 [ 1.4 min] ? [ > 24 h] X[ 21 s]

LL2 X2 [5.1 min] X2 [ 3.3 s] X2 [2.1 min] X2 [1.2 min] X2 [ 7.2 s] X2 [ 0.37 s] ?2 [ > 24 h] X2 [ 11 s] X[ 5.4 s] X[ 0.93 s]
LL∗2 ?2 [ OoM] X2 [ 18 s] X2 [ 7.7 h] X2 [4.5 min] X2 [ 53 s] X2 [ 3.2 s] ?2 [ > 24 h] X2 [ 47 s] ? [ > 24 h] X[ 24 s]
NF1 1 [ 23 ms] 1 [ 8.0 ms] X1 [ 0.12 s] X1 [ 57 ms] 1 [ 30 ms] 1 [ 8.0 ms] X1 [ 0.13 s] X1 [ 0.10 s] X[ 0.54 s] X[ 0.47 s]
NF2 2 [ 0.11 s] 2 [ 0.90 s] X2 [ 4.4 s] X2 [ 1.8 s] 2 [ 95 ms] 2 [ 11 ms] X2 [ 11 s] X2 [ 2.4 s] X[ 8.5 s] X[ 0.30 s]

PRESENT

L3
2 X2 [2.8 min] X2 [ 0.50 s] X2 [ 21 s] X2 [ 3.4 s] X2 [ 8.5 s] X2 [ 0.18 s] ?2 [ > 24 h] X2 [ 23 s] X[ 41 s] X[ 5.5 s]

L5
2 X2 [1.5 min] X2 [ 0.34 s] X2 [ 7.5 s] X2 [ 1.5 s] X2 [ 12 s] X2 [ 0.18 s] X2 [ 47 s] X2 [ 1.9 s] X[ 26 s] X[ 1.4 s]

L3
2∗ X2 [ 24 min] X2 [ 4.8 s] X2 [ 2.7 h] X2 [ 20 s] X2 [2.4 min] X2 [ 1.7 s] ?2 [ > 24 h] X2 [ 6.1 min] ? [ > 24 h] X[ 47 s]

NF1 1 [ 18 ms] 1 [ 6.0 ms] X1 [ 59 ms] X1 [ 0.19 s] 1 [ 18 ms] 1 [ 8.0 ms] X1 [ 53 ms] X1 [ 0.27 s] X[ 1.7 s] X[ 87 ms]
NF2 2 [ 89 ms] 2 [ 1.7 s] X2 [ 4.4 s] X2 [ 2.3 s] 2 [ 88 ms] 2 [ 6.0 ms] X2 [ 13 s] X2 [ 3.9 s] [ 4.2 s] [ 56 ms]
TINU1 1 [ 16 ms] 1 [ 65 ms] 1 [ 64 ms] 1 [ 0.63 s] 1 [ 23 ms] 1 [ 5.0 ms] 1 [ 72 ms] 1 [ 0.75 s] [ 0.18 s] [ 0.57 s]
TIU1 1 [ 24 ms] 1 [ 0.26 s] X1 [ 77 ms] X1 [ 57 ms] 1 [ 24 ms] 1 [ 7.0 ms] X1 [ 97 ms] X1 [ 0.12 s] X[ 0.28 s] X[ 14 ms]
TIU′1

1 [ 19 ms] 1 [ 67 ms] X1 [ 0.14 s] X1 [ 0.15 s] 1 [ 40 ms] 1 [ 18 ms] X1 [ 0.12 s] X1 [ 0.24 s] X[ 0.26 s] X[ 0.11 s]

PRINCE

INF1 1 [ 31 ms] 1 [ 11 ms] X1 [ 67 ms] X1 [ 84 ms] 1 [ 40 ms] 1 [ 7.0 ms] X1 [ 58 ms] X1 [ 0.14 s] [ 0.37 s] [ 0.53 s]
L4

2
2 [ 13 min] 2 [ 1.7 s] 2 [ 50 s] 2 [ 6.3 s] 2 [ 0.69 s] 2 [ 0.39 s] 2 [ 39 min] 2 [2.0 min] X[ 2.6 min] X[2.3 min]

L4
2′

2 [ 14 min] X2 [ 1.7 s] X2 [7.1 min] X2 [ 18 s] 2 [ 0.72 s] 2 [ 0.41 s] ?2 [ > 24 h] X2 [ 13 min] X[ 3.8 min] X[2.3 min]

L6
2 X2 [6.8 min] X2 [ 1.00 s] X2 [6.3 min] X2 [ 8.2 s] 2 [ 6.2 s] 2 [ 47 min] X2 [ 4.0 h] X2 [ 18 s] X[2.8 min] X[ 28 min]

LL2 ?2 [ OoM] X2 [ 3.2 s] X2 [2.6 min] X2 [1.3 min] X2 [ 50 s] X2 [ 0.43 s] ?2 [ > 24 h] X2 [ 1.6 min] X[ 18 s] X[ 0.33 s]
LL∗2 ?2 [ OoM] X2 [ 22 s] X2 [ 9.1 h] X2 [6.2 min] X2 [1.4 min] X2 [ 4.2 s] ?2 [ > 24 h] X2 [ 26 min] ? [ > 24 h] X[ 34 s]
NF1 1 [ 24 ms] 1 [ 13 ms] X1 [ 64 ms] X1 [ 68 ms] 1 [ 40 ms] 1 [ 7.0 ms] X1 [ 55 ms] X1 [ 0.15 s] [ 0.20 s] [ 1.7 s]
NF2 2 [ 0.28 s] 2 [ 17 s] X2 [ 45 s] X2 [ 5.0 s] 2 [ 0.21 s] 2 [ 6.0 ms] X2 [2.2 min] X2 [ 8.4 s] X[ 22 s] X[ 0.98 s]
TI1 1 [ 24 ms] 1 [ 27 ms] X1 [ 70 ms] X1 [ 51 ms] 1 [ 53 ms] 1 [ 16 ms] X1 [ 0.14 s] X1 [ 0.12 s] X[ 0.78 s] X[ 0.52 s]

SKINNY

CMS1 1 [ 25 ms] 1 [ 37 ms] X1 [ 0.36 s] X1 [ 65 ms] 1 [ 24 ms] 1 [ 10 ms] X1 [ 0.89 s] X1 [ 0.13 s] X[ 1.7 s] X[ 0.74 s]
L3

2 X2 [ 34 s] X2 [ 78 ms] X2 [ 4.9 s] X2 [ 0.98 s] X2 [ 3.4 s] X2 [ 70 ms] X2 [ 18 min] X2 [ 2.1 s] X[ 20 s] X[ 5.3 s]
L4

2 X2 [ 27 s] X2 [ 64 ms] X2 [ 4.2 s] X2 [ 0.73 s] X2 [ 3.4 s] X2 [ 49 ms] X2 [ 27 s] X2 [ 0.81 s] X[ 21 s] X[ 0.36 s]
L3

2∗ X2 [3.9 min] X2 [ 0.49 s] X2 [ 30 min] X2 [ 6.0 s] X2 [ 30 s] X2 [ 0.49 s] ?2 [ > 24 h] X2 [ 9.8 s] ? [ > 24 h] X[ 16 s]
NF2 2 [ 30 ms] 2 [ 56 ms] X2 [ 1.7 s] X2 [ 0.38 s] 2 [ 51 ms] 2 [ 4.0 ms] X2 [ 3.9 s] X2 [ 0.57 s] X[ 10 s] X[ 0.22 s]
TI1 1 [ 41 ms] 1 [3.5 min] X1 [1.4 min] X1 [ 1.4 s] 1 [ 50 ms] 1 [ 1.1 h] X1 [3.5 min] X1 [ 3.4 s] X[ 18 min] X[ 18 min]

Introduction to CocoAlma. CocoAlma represents an upgraded version of RE-
BECCA [BGI+18]with enhanced usability and performance, supporting stateful hardware
verification. The verification process in CocoAlma unfolds through three primary steps.
Initially, it parses the provided hardware design into a gate-level Verilog netlist using Yosys
[WGK13]. Subsequently, Verilator [Sny04] is employed to simulate this netlist alongside a
user-provided testbench. We used this step to determine the inclusion of each open-source
masked implementation collected for our benchmarks. For example, implementations that
fail to produce correct outputs, such as the LL implementations of SKINNY S-boxes from
[SDM23], were excluded from our evaluation. The third step is to verify the side-channel
security of a masked implementation in a specified security model.



574 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

CocoAlma supports three models: standard probing model (or software probing model
in their terminology), time-constrained probing model, and stateful hardware probing
model. In time-constrained probing model, CocoAlma accounts for leakage not only
from glitches but also from register transitions. Register transitions often happen when
the implementation processes two consecutive inputs during two consecutive clock cycles.
However, in our experiments, the inputs are fed to the circuit only in the first cycle when
using CocoAlma. We believe that the transitional leakage is unlikely to happen in this
setup thus the comparison to CocoAlma is relatively fair. The third model can handle
stateful circuits, a capability not supported by maskVerif, SILVER, and Prover. Therefore,
we used CocoAlma to verify the masked implementations only under the software probing
model and time-constrained probing model. The results under these two models are shown
in the standard probing security column and glitch-extended probing security column of
Table 5, respectively.

Another distinction between CocoAlma and other tools is its use of an execution trace
that simulates the hardware running process. This approach is more realistic but requires
the user to identify the number of clock cycles to verify. We configured this parameter
based on the Cycl. column in Table 2.

Introduction to maskVerif. maskVerif is an efficient verification tool that utilizes
features of programming language. It employs three rules – INDEP, OPT, and CONV –
to verify the security of a masked hardware implementation. Rule INDEP asserts that if
no secret variable appears in a expression e (observable function f in our terminology),
then e is deemed secure. Rule OPT operates similarly to our Reduction Rule 1. It
stipulates that if n ∈ Od and perf(n)∩ supp(Od \ {n}) = ∅, then substitute the expression
of fn with r ∈ perf(n) in Od, obtaining O′d and continue verification with O′d. Rule
CONV employs algebraic normalization to simplify expressions. Take the threshold
implementation for Q12 in Appendix A.2 of [RBN+15b] for example. Consider a single
observation z̄1 = z1 + z2 = (a1b1 + a1c1 + c1) + (a1c2 + a1b2) where a, b, and c are the
secret variable and a1, a2, b1, b2, c1, c2 are their corresponding shares. Neither rule OPT nor
Reduction Rule 1 are directly applicable to verify the security of z̄1. However, maskVerif can
verify it using rule CONV. In maskVerif’s internal representation, a1, b1, c1 are treated as
uniform random variables, and a2, b2, c2 are represented as a+a1, b+b1, c+c1. Normalizing
z̄1 results in z̄1 = a1b1 + a1c1 + c1 + a1(c+ c1) + a1(b+ b1) = c1 + a1c+ a1b. Now, c1 acts
as a perfect mask for z̄1, allowing application of rule OPT or Reduction Rule 1 to conclude
that z1 is secure. The application of rule CONV is likely the reson why maskVerif has
fewer false positive cases under the standard probing model compared to CocoAlma. In
fact, maskVerif could identify that the Q12 is standard probing secure due to rule CONV
while CocoAlma can not. Nevertheless, as noted by the authors of maskVerif, rule CONV
negatively impacts performance [BBD+15], which results in slower verification times for
certain false positive cases in our experiments, such as the TI1 implementation of the
SKINNY S-box.

Identification of False Positives. Out of 45 benchmarks, there are 43 benchmarks
that are secure under both models. For the secure implementations, any leakage reported
by CocoAlma and maskVerif is considered as a false positive. CocoAlma and maskVerif
exhibit a significant issue with false positives when verifying Threshold Implementations or
implementations from [SM21a] and [SM21b]. These implementations rely on Boolean func-
tion properties rather than fresh randomness to achieve standard or glitch-extended probing
security, while CocoAlma and maskVerif appear to excel in verifying implementations
that achieve security through fresh randomness.

Regarding the two insecure implementations, detailed analyses are available in the
repository of Prover5 to determine whether the leakages reported by CocoAlma and
maskVerif are real or false positives. Ultimately, we found that CocoAlma correctly iden-

5https://github.com/Lucien98/prover/tree/uniformity/experiment/tches2025_1

https://github.com/Lucien98/prover/tree/uniformity/experiment/tches2025_1


Feng Zhou, Hua Chen, Limin Fan 575

tified the real leakage of TINU1 implementation of PRESENT S-box under glitch-extended
probing model and maskVerif correctly identified the real leakage of L4

2 implementation of
PRINCE S-box under standard probing model. However, other reported leakages on these
two implementations by CocoAlma and maskVerif were false positives.

Comparison on Usability and Accuracy. CocoAlma encounters memory issues
in 5 benchmarks, primarily due to their higher order (such as the two third-order secure
implementations of the Keccak S-box) or larger circuit sizes (e.g., the paired version of
masked S-boxes).

In contrast to CocoAlma and maskVerif, SILVER avoids false positive cases by utilizing
Binary Decision Diagrams for symbolic and exhaustive analysis of probability distributions
and statistical independence of joint distributions. However, SILVER’s performance is
notably slower compared to other tools, especially with larger circuit sizes. For instance,
SILVER requires more than one hour to verify 5 benchmarks out of 45 under the standard
probing model, whereas other tools complete in at most 36 minutes. Its performance under
glitch-extended probing models is even more constrained, with timeouts occurring in 10
benchmarks. It also runs out of time on 6 benchmarks in uniformity check.

Table 6 provides an overview of the number of successfully verified benchmarks and
failures due to various reasons for each tool. CocoAlma and maskVerif handle a total
of 90 verification instances, whereas SILVER and Prover manage 135, as SILVER and
Prover verify an additional security notion compared to CocoAlma and maskVerif in our
experiments. CocoAlma, maskVerif, and SILVER experience failures in 50%, 42%, and
12% of verification instances, respectively, while Prover succeeds in all instances. Maximum
verification time is also compared across tools, revealing that Prover has the shortest
maximum verification time.

Table 6: Performance comparison between COCO-ALMA, maskVerif, SILVER, and Prover

Tool
#False Pos.

#OoM
#Timout

#Succ. Max. Timestd. rob. std. rob. unif.
CocoAlma 20 20 5 0 0 N/A 45/90 36 min
maskVerif 17 21 0 0 0 N/A 52/90 1.1 h
SILVER 0 0 0 0 10 6 119/135 > 24 h
Prover 0 0 0 0 0 0 135/135 28 min

Comparison over Non-false-positives. Now we compare the four tools on the
benchmarks that no tool exhibits false positives. We begin the comparison with the
twenty-five benchmarks under standard probing model. maskVerif performs best on 24
benchmarks, with Prover achieving the best result on one benchmark. Overall, Prover
generally outperforms CocoAlma and SILVER. However, Prover does not surpass Co-
coAlma and SILVER in very small circuits, such as the four 1st-order implementations of
the Keccak S-box. Given the small circuit size, the methods employed by other tools are
efficient enough. However, Prover not only dedicates time to computing ROBDD represen-
tations for observable functions but also computes auxiliary data structures. Therefore,
it is understandable that Prover requires more time. Prover also does not outperform
CocoAlma in the TI1 implementation of AES S-box, but Prover completes its verification
in less than 1 second.

This pattern persists in the verification of 24 true negative cases under glitch-extended
probing model. However, Prover does not outperform maskVerif in any benchmark this
time. Apart from the previously mentioned 5 benchmarks, CocoAlma outperforms Prover
on 6 larger implementations (Keccak L2, Midori LL2, PRESENT L3

2 and L3
2∗ , PRINCE

LL2 and LL∗2). Conversely, Prover outperforms CocoAlma in the rest 13 benchmarks.



576 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

5.3.2 Comparison to SILVER

Comparison to SILVER over False Positives of CocoAlma and maskVerif. Under
standard probing model, maskVerif fails to verify the security of 17 benchmarks while
CocoAlma fails on 20. There are three cases that CocoAlma fails to verify while
maskVerif succeeds: NF2 implementation of Keccak S-box and L4

2, and L4
2′ implementation

of PRINCE S-box. maskVerif performs the best in these three benchmarks among the
three tools that could identify their security. Out of the 17 false positives of maskVerif,
Prover outperforms SILVER on 12 benchmarks. Under glitch-extended probing model,
there are 20 and 21 false positives for CocoAlma and maskVerif respectively. In the case
where maskVerif fails to verify while CocoAlma succeeds, i,e., the TINU1 implementation
of PRESENT S-box, CocoAlma performs better than SILVER and Prover. Prover
outperforms SILVER on 15 of remaining 20 benchmarks. Under both models, all the
benchmarks where SILVER outperforms Prover are verified within 0.5 second by Prover.
Note that SILVER runs out of time while attempting to verify the L4

2′ implementation
of PRINCE S-box, where CocoAlma and maskVerif encounter false positive issues. In
contrast, Prover successfully verifies it within 13 minutes.

Comparison to SILVER on Uniformity Check. Algorithm 3 is not employed
when the outputs of these implementations lack perfect masks or are 2-shared, totaling 22
benchmarks. For these benchmarks, the verification is conducted using the original method
from SILVER but with a different variable ordering, specifically variable ordering 2 as
outlined in this paper. For the remaining benchmarks, Prover utilizes Algorithm 3 to verify
their uniformity. There are only 11 cases where Prover does not outperform SILVER. Nine
of them can be verified within 2 seconds, which we consider acceptable. In the remaining
two case, one is comparable to SILVER, while the other can be verified within half an
hour. Notably, half an hour represents the longest verification time of Prover in all our
experiments. On the contrary, SILVER runs out of time in 6 benchmarks.

Among the 10 benchmarks that fail to pass the uniformity check, four implementations
(AES S-boxes and PRINCE S-boxes) are from [SM21a], which the authors of [SM21a] also
claimed they are not uniform. Regarding the NF2 Implementations of PRESENT, the
authors of [SM21b] claimed that it is uniform and the original SILVER falsely recognized
it as uniform due to a bug. However, Prover and the corrected SILVER report it as not
uniform. The authors of [SM21b] claimed the first-order DOM implementation without
fresh randomness (DOM′1 implementation of Keccak) in [GSM17] is not uniform and they
provided a uniform solution (NF1) by using their searching techniques. All these are also
confirmed by Prover. As for the L implementations of Keccak S-box, the outputs are not
compressed into d + 1 shares in the part of implementations we synthesized, i.e., each
output has (d + 1)2 output shares. With (d + 1)2 output shares, they fail to pass the
uniformity check.

Why Does SILVER Run Out of Time on These Benchmarks? SILVER fails to
provide results on glitch-extended probing security and uniformity in several benchmarks
due to the large size of observable sets. For instance, the TI1 implementation of AES
S-box has 8 observation sets of size 23 and 32 sets of size 21. Each set of size 23 requires
approximately 44 hours to be verified, and each set of size 21 requires about 9 hours. In
the LL∗2 implementations, the largest sets are of size 18. There are 153 and 276 such sets
in the LL∗2 S-box implementations of Midori and PRINCE, respectively. While we did not
further inspect how much time is needed to verify such sets, they are the primary factor
contributing to SILVER’s slow performance. After applying Reduction Rule 1 of Prover,
the largest sets (and the number of largest sets) in these implementations are of size 9 and
16 (with numbers 126 and 10). Since the size of the largest observable sets that need to
be verified by ROBDDs is significantly smaller, Prover requires significantly less time to
verify these implementations. The same analysis could be applied to the other benchmarks
SILVER runs out of time.



Feng Zhou, Hua Chen, Limin Fan 577

The TI1 implementation of AES S-box does not compress the output shares, and the
outputs are 4-shared. To check the uniformity of its output sharing, SILVER needs to
construct (24 − 1)8 − 1 ≈ 231.3 ROBDDs and verify if they are all balanced. With such
complexity, it is not surprising that SILVER runs out of time. As for the uniformity check
of LL∗2 implementations, SILVER needs to construct (23− 1)8− 1 ≈ 222.5 ROBDDs, which
also leads to running out of time.

Table 7: Number of applications of reduction rules
Scheme

std rob

#Total #Red. #Robdd %Red. #Total #Sub. #Red. #Robdd %Red.

AES

1F1 791 121 670 15% 176 0 80 96 45%
4F1 816 158 658 19% 188 8 84 96 45%
CMS1 746 458 288 61% 192 0 176 16 92%
DOM1 644 356 288 55% 240 8 164 68 68%
NF1 948 77 871 8% 240 4 96 140 40%
TI1 664 375 289 56% 112 0 112 0 100%

Keccak

DOM1 91 71 20 78% 30 0 30 0 100%
DOM′1 81 51 30 63% 30 0 20 10 67%
DOM2 17955 10265 7690 57% 1830 69 1650 111 90%
DOM3 7906623 3626245 4280378 46% 166750 7384 137460 21906 82%
L1 65 45 20 69% 20 0 20 0 100%
L2 9180 4010 5170 44% 1035 0 1035 0 100%
L3 2028025 540440 1487585 27% 85400 0 85400 0 100%
NF1 66 46 20 70% 30 0 22 8 73%
NF2 8256 3294 4962 40% 1830 161 1035 634 57%

Midori

L3
2 62481 39478 23003 63% 4186 244 3018 924 72%

L4
2 18721 10371 8350 55% 3570 487 2413 670 68%

L4
2∗ 241165 151239 89926 63% 14535 663 10639 3233 73%

LL2 584821 221554 363267 38% 5886 0 5790 96 98%
LL∗2 1449253 605043 844210 42% 23436 0 23244 192 99%
NF1 168 27 141 16% 36 0 28 8 78%
NF2 25651 6174 19477 24% 5253 537 3203 1513 61%

PRESENT

L3
2 56616 38140 18476 67% 4278 239 3215 824 75%

L5
2 20706 11702 9004 57% 4656 333 3408 915 73%

L3
2∗ 215496 143731 71765 67% 14196 767 10606 2823 75%

NF1 142 37 105 26% 36 0 30 6 83%
NF2 25200 8789 16411 35% 5253 484 3200 1569 61%
TINU1 126 60 66 48% 7 0 6 1 86%
TIU1 263 128 135 49% 26 0 13 13 50%
TIU′1 570 115 455 20% 25 0 12 13 48%

PRINCE

INF1 210 37 173 18% 40 0 32 8 80%
L4

2 47860 31038 16822 65% 265 38 165 62 62%
L4

2′
75855 45548 30307 60% 5995 800 4096 1099 68%

L6
2 33411 18628 14783 56% 7260 406 5126 1728 71%

LL2 637885 265322 372563 42% 7260 208 6501 551 90%
LL∗2 1805950 781301 1024649 43% 1844 375 675 794 37%
NF1 171 42 129 25% 40 0 32 8 80%
NF2 28920 11673 17247 40% 9591 433 6654 2504 69%
TI1 149 48 101 32% 37 15 15 7 41%

SKINNY

CMS1 96 51 45 53% 96 12 66 18 69%
L3

2 23436 16240 7196 69% 2926 22 2673 231 91%
L4

2 17766 10679 7087 60% 3570 46 2793 731 78%
L3

2∗ 90100 62024 28076 69% 10440 45 9787 608 94%
NF2 8515 4051 4464 48% 2628 135 1761 732 67%
TI1 274 149 125 54% 102 3 93 6 91%

The Application of Reduction Rules and Subset Strategy. For all the bench-
marks, we have counted the number of sets verified by Reduction Rules, subset strategy,
and statistical independence check via ROBDDs, as shown in Table 7. The first column
contains the name of the implementations. Columns 2-5 (and 6-10) show the total sets
verified by Prover (starting with d = 1), the number of secure sets verified using only
reduction rules (as in lines 11 to 15 in Algorithm 2), the number of sets verified by ROBDDs
(in the for loop at line 28 in Algorithm 2), and the proportion of sets that are verified
solely relying on reduction rules under standard (glitch-extended) probing model. Since
the observation sets under glitch-extended probing model have an arbitrary size, the subset



578 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

strategy is applicable in this situation, and the number of sets verified by this strategy
is shown in column 7. From the table, one can see that in 32 benchmarks (more than 2

3
of benchmarks), more than 40% of sets are verified solely by reduction rules under the
standard probing model. This holds true for all benchmarks under the glitch-extended
probing model as well, demonstrating the efficacy of reduction rules.

5.4 Comparison with State-Of-The-Art Tools over Standard Gadgets
In our third experiment, we compared Prover with three state-of-the-art tools on standard
gadgets, namely IronMask [BMRT22], maskVerif [BBC+19] and SILVER [KSM20].

Introduction to IronMask. IronMask is an automatic verification tool designed
to check probing and random probing security properties using complete and efficient
procedures. It can verify not only probing security but also random probing composability
and expandability. A notable feature of IronMask is its capability to verify standard gadgets
at very high orders, even greater than 10. However, despite its claims of completeness
in the robust probing model, our experiments reveal that these claims are not entirely
accurate.

Verification Results. Table 8 presents the verification results and time of the four
tools applied to standard gadgets. The first column lists the names of the standard gadgets,
and the second column shows the number of shares for inputs and outputs in these gadgets.
Columns 3-6 and 7-10 display the verification results and time for IronMask, maskVerif,
SILVER, and Prover under the standard and glitch-extended probing models, respectively.
The symbol Xd , which is not used in previous sections, indicates the tool incorrectly reports
an insecure implementation as secure at order d. Other symbols in Table 8 have meanings
consistent with those described earlier. The abbreviation S. F. in column 3 indicates that
IronMask encounters a segmentation fault during verification. The abbreviation OoM in
column 6 indicates Prover runs out of memory during verification.

Table 8: Verification results and required time by IronMask, maskVerif, SILVER, and
Prover over standard gadgets

Gadgets |Sh(x)|

Standard Probing Security Glitch-extended Probing Security

IronMask maskVerif SILVER Prover IronMask maskVerif SILVER Prover
[BMRT22] [BBC+19] [KSM20] this work [BMRT22] [BBC+19] [KSM20] this work

ISW
mult

[ISW03]

2 ?1 [ S. F. ] X1 [ 2.0 ms ] X1 [ 12 ms ] X1 [ 0.24 ms ] 1 [ < 1 s ] 1 [ 1.0 ms ] 1 [ 17 ms ] 1 [ 12 ms ]
3 X2 [ < 1 s ] X2 [ 3.0 ms ] X2 [ 64 ms ] X2 [ 6.3 ms ] X1 [ < 1 s ] 1 [ 1.0 ms ] 1 [ 33 ms ] 1 [ 31 ms ]
4 X3 [ < 1 s ] X3 [ 25 ms ] X3 [ 0.47 s ] X3 [ 3.2 s ] 1 [ < 1 s ] 1 [ 1.0 ms ] 1 [ 55 ms ] 1 [ 59 ms ]
5 X4 [ < 1 s ] X4 [ 0.33 s ] X4 [ 1.2 min ] X4 [ 5.9 min ] X1 [ < 1 s ] 1 [ 2.0 ms ] 1 [ 93 ms ] 1 [ 0.10 s ]
6 X5 [ < 1 s ] X5 [ 6.2 s ] X5 [ 3.6 h ] ?5 [ OoM ] 1 [ < 1 s ] 1 [ 4.0 ms ] 1 [ 0.42 s ] 1 [ 54 ms ]

refresh
nlogn

[BCPZ16]

2 X1 [ < 1 s ] X1 [ 1.0 ms ] X1 [ 3.9 ms ] X1 [ 0.20 ms ] X1 [ < 1 s ] X1 [ 1.0 ms ] X1 [ 5.1 ms ] X1 [ 1.9 ms ]
4 X3 [ < 1 s ] X3 [ 2.0 ms ] X3 [ 81 ms ] X3 [ 40 ms ] X3 [ < 1 s ] X3 [ 1.0 ms ] X3 [ 62 ms ] X3 [ 23 ms ]
6 X5 [ < 1 s ] X5 [ 3.0 ms ] X5 [ 21 s ] X5 [ 1.5 min ] X5 [ < 1 s ] X5 [ 2.0 ms ] X5 [ 1.2 min ] X5 [ 1.8 s ]
7 X6 [ < 1 s ] X6 [ 6.0 ms ] X6 [ 12 min ] ?6 [ OoM ] X6 [ < 1 s ] X6 [ 2.0 ms ] X6 [ 1.1 h ] X6 [ 7.0 s ]

Comparison over the four tools. Among the nine benchmarks, IronMask fails on
one under standard probing model and fails on two under glitch-extended probing model.
All successfully verified benchmarks are completed within one second (the timing reported
by IronMask is less precise than that of the other tools). Notably, IronMask is able to
verify ISW multiplication with 6 shares but encounters a segmentation fault when checking
the multiplication with the smallest number of shares. Despite claiming completeness in
the presence of glitches, IronMask does not uphold this claim. IronMask reports the ISW
multiplication as 1-NI in the glitch-extended probing model for cases where the number of
input shares is odd: in addition to the 3-shared and 5-shared ISW multiplications listed
in Table 8, it also reports the 7-shared and 9-shared ISW multiplications as 1-NI. The
results are reproducible, and the verification log is public available6. In contrast, maskVerif
generally demonstrates the best performance under both models.

6https://github.com/Lucien98/IronMask/tree/main/experiment/im_results/ISW_mult

https://github.com/Lucien98/IronMask/tree/main/experiment/im_results/ISW_mult


Feng Zhou, Hua Chen, Limin Fan 579

On the other hand, Prover does not surpass SILVER in verifying the standard probing
security of higher-order standard gadgets. This discrepancy arises because the benchmarks
provided by IronMask inadvertently equips SILVER with the variable ordering 1 strategy
proposed in Section 4, rather than the original inefficient ordering. Meanwhile, Prover
uses the default ordering 2 strategy, which is less suitable for verifying standard gadgets.
Consequently, the suboptimal ordering 2 strategy leads to Prover running out of memory.
Under the glitch-extended probing model, Prover generally performs better than SILVER
due to the application of reduction rules.

5.5 Analysis on the Insecure Implementations
There are two benchmarks that are not probing secure under both models. The first
one, TINU1 implementation of PRESENT S-box, is available at SILVER’s repository.
In [EGMP17], the PRESENT S-box is decomposed as F ◦ G. The authors introduced
correction terms to ensure the output sharing of G is uniform, resulting in the design TIU1.
However, the TINU1 implementation of PRESENT S-box uses the function G without
correction terms, thereby exhibiting leakage. More details about the leakage could be
found at Prover’s Github repository.

To our knowledge, this paper is the first one to identify the security issue of the L4
2

implementation of PRINCE S-box from [BDMS22]. Both SILVER and Prover detected a
second-order leakage for this implementation under both models (maskVerif identified the
real leakage under standard probing model). For detailed expressions of the L4

2 implemen-
tation of PRINCE S-box, please refer to Appendix F in [BDMS22]. In the following, the
inputs of this S-box are denoted as a, b, c, d while a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2 are
the corresponding shares. Under standard probing model, a probe placed at the partial
result of h8 in F function, P1 = a1c0 + c0d1, combining a probe at the partial results of k6
in G function, P2 = dg0b

g
0 + dg0c

g
0 + bg0 + ag0, results in second-order leakage. The variables

can be expressed in terms of shares of a, b, c, d as shown in Equation 8 where the variables
with a superscript f or g come from function F or G.

P1 = a1c0 + c0d1

ag0 = xf0 = 1 + a1 + d1 + c2

bg0 = yf0 = c1

cg0 = zf0 = 1 + a1 + a1c1 + c1d1 + c2 + c2a1 + c2d1 + c1a2 + c1d2 + r0 + r2

dg0 = tf0 = d1a1 + 1 + d1a2 + b1 + a1d2 + r6 + r8

(8)

Here, r0 is only used by cg0, r6 is only used by dg0. According to the theory of maskVerif, we
could substitute cg0 and dg0 with r0 and r6 respectively in the expression of P2. Therefore,
the observable set {P1, P2} is equivalent to {P ′1, P ′2} = {c0(a1 + d1), r6c1 + r6r0 + c1 + (1 +
a1 + d1 + c2)}. The histogram of the joint distribution of (P ′1, P ′2) for c = 0 and c = 1 is
depicted in Table 9. The distribution is dependent on the value of c, indicating leakage.

Table 9: Histogram of the joint distribution of (P ′1, P ′2) for c = 0 and c = 1
(P ′1, P ′2) (0, 0) (0, 1) (1, 0) (1, 1)
c = 0 28 20 4 12
c = 1 20 28 12 4

One can observe P1 includes one share of c in its expression while P2 involves another
two shares of c (in the expression of ag0 and bg0), resulting the leakage. One might question
whether changing the computation order of h8 and k6 could mitigate this issue. For
example, if we use the mask o0 from the expression of k6 to mask P2, P2 would have a



580 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

perfect mask o0. Consequently, when combined with P1, it will not reveal information
about c. More specifically, we reorder the computation of k6 as follows: first compute
P3 = o0 +ag0, then incorporate the other terms into P3 to obtain k6. We manually adjusted
the netlist generated by Design Compiler in this manner and tested it with SILVER
and Prover, both of which reported no second-order leakage for the modified netlist file
under the standard probing model. However, second-order leakage persisted under the
glitch-extended probing model.

Under glitch-extended probing model, placing a probe at the input of the register z′8
in function F would expose c0, a1, d1. Another probe placed at k6 in function G would
reveal ag0 = 1 + a1 + d1 + c2 and bg0 = c1. It is evident that c can be reconstructed by
combining these variables. To address this issue, we modified the design by replacing the
correction term c2 in the expression of xf0 and xf1 in function F with a fresh random bit r.
This revised design is referred to as L4

2′ implementation of PRINCE S-box in Table 2. Its
security is successfully verified by Prover within 13 minutes, whereas SILVER runs out of
time and other tools encounter false positive issues.

6 Conclusion
In this study, drawing inspiration from auxiliary data structures from [EWS14] and
the OPT rule from maskVerif [BBD+15], we introduced two reduction rules and two
variable ordering strategies to enhance SILVER’s capability in verifying standard and
glitch-extended probing security, as well as uniformity of masked implementations. This
effort led to the development of a tool named Prover. Thanks to these reduction rules,
observation sets and secret input sets are significantly decreased before being verified
by ROBDDs or even becoming empty sets. This reduction mitigates the reliance for
ROBDDs and greatly enhances scalability. We also conducted numerous experiments to
compare Prover to state-of-the-art tools, CocoAlma, maskVerif, and SILVER in verifying
S-boxes. On verifying true negatives of existing efficient tool CocoAlma and maskVerif,
Prover generally performs comparably or better than CocoAlma, although it is not as
efficient as maskVerif. When verifying false positives of CocoAlma and maskVerif, Prover
outperforms SILVER across most benchmarks. Notably, Prover successfully verified a
design that SILVER could not complete within time limit, while other tools encountered
false positive issues. While Prover’s performance is not entirely satisfactory in verifying
standard gadgets under standard probing model, it can handle verification at orders up
to 4 or 5, which is sufficient for practical security needs. Additionally, our experiments
helped identify bugs in existing tools, including SILVER and IronMask. In summary, Prover
achieves a superior balance between efficiency and accuracy than the other state-of-the-art
tools.

Future research directions could involve extending our methods to verify implementa-
tions under other security notions (such as NI, SNI, and PINI) and against other physical
attacks, such as transitions.

Acknowledgments
This work is supported by the National Natural Science Foundation of China (No.
62172395), the Natural Science Foundation of Beijing - Innovation Joint Fund of Changping
(No. L234085), and the Joint Funds of the National Natural Science Foundation of China
(No. U2336210).
The authors sincerely thank the anonymous reviewers for their valuable comments, which-
significantly improved the quality of the paper.



Feng Zhou, Hua Chen, Limin Fan 581

References
[Ajt11] Miklós Ajtai. Secure computation with information leaking to an adversary. In

Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 715–724.
ACM Press, June 2011.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskVerif: Automated verification
of higher-order masking in presence of physical defaults. In Kazue Sako, Steve
Schneider, and Peter Y. A. Ryan, editors, ESORICS 2019, Part I, volume
11735 of LNCS, pages 300–318. Springer, Heidelberg, September 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 457–485. Springer, Heidelberg, April 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Heidelberg, August
2016.

[BDMS22] Tim Beyne, Siemen Dhooghe, Amir Moradi, and Aein Rezaei Shahmirzadi.
Cryptanalysis of efficient masked ciphers: Applications to low latency. IACR
TCHES, 2022(1):679–721, 2022.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal verification of masked hardware
implementations in the presence of glitches. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 321–353. Springer, Heidelberg, April / May 2018.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits:
Achieving probing security with the least refreshing. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 343–372. Springer, Heidelberg, December 2018.

[Bil15] Begül Bilgin. Threshold implementations : as countermeasure against higher-
order differential power analysis. PhD thesis, University of Twente, Enschede,
Netherlands, 2015.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.

[BJK+20] Christof Beierle, Jeremy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-hash. IACR Trans. Symm. Cryptol., 2020(S1):88–131,
2020.



582 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

[BMRT22] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb.
IronMask: Versatile verification of masking security. In 2022 IEEE Symposium
on Security and Privacy, pages 142–160. IEEE Computer Society Press, May
2022.

[BNN+15] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N.
Tokareva, and Valeriya Vitkup. Threshold implementations of small s-boxes.
Cryptogr. Commun., 7(1):3–33, 2015.

[BRNI13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth:
Automated verification of software power analysis countermeasures. In Guido
Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086 of LNCS,
pages 293–310. Springer, Heidelberg, August 2013.

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of obdds is
np-complete. IEEE Trans. Computers, 45(9):993–1002, 1996.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier
Standaert. Hardware private circuits: From trivial composition to full
verification. Cryptology ePrint Archive, Report 2020/185, 2020. https:
//eprint.iacr.org/2020/185.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[DBR19] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating security
notions in hardware masking. IACR TCHES, 2019(3):119–147, 2019. https:
//tches.iacr.org/index.php/TCHES/article/view/8291.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
423–440. Springer, Heidelberg, May 2014.

[DRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 194–212. Springer, Heidelberg, August 2016.

[EGMP17] Maik Ender, Samaneh Ghandali, Amir Moradi, and Christof Paar. The first
thorough side-channel hardware trojan. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages
755–780. Springer, Heidelberg, December 2017.

[EWS14] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of
software countermeasures against side-channel attacks. ACM Trans. Softw.
Eng. Methodol., 24(2):11:1–11:24, 2014.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR TCHES, 2018(3):89–
120, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
7270.

[Fri92] Joel Friedman. On the bit extraction problem. In 33rd FOCS, pages 314–319.
IEEE Computer Society Press, October 1992.

https://eprint.iacr.org/2020/185
https://eprint.iacr.org/2020/185
https://tches.iacr.org/index.php/TCHES/article/view/8291
https://tches.iacr.org/index.php/TCHES/article/view/8291
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270


Feng Zhou, Hua Chen, Limin Fan 583

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-design and co-verification of masked software implementa-
tions on CPUs. In Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2021, pages 1469–1468. USENIX Association, August 2021.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceedings of
the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016
Vienna, Austria, October, 2016, page 3. ACM, 2016.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In Helena
Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 95–112.
Springer, Heidelberg, February 2017.

[GSM17] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-order side-
channel protected implementations of KECCAK. In Hana Kubátová, Martin
Novotný, and Amund Skavhaug, editors, Euromicro Conference on Digital
System Design, DSD 2017, Vienna, Austria, August 30 - Sept. 1, 2017, pages
205–212. IEEE Computer Society, 2017.

[GXSC21] Pengfei Gao, Hongyi Xie, Fu Song, and Taolue Chen. A hybrid approach to
formal verification of higher-order masked arithmetic programs. ACM Trans.
Softw. Eng. Methodol., 30(3):26:1–26:42, 2021.

[HB21] Vedad Hadzic and Roderick Bloem. COCOALMA: A versatile masking verifier.
In Formal Methods in Computer Aided Design, FMCAD 2021, New Haven,
CT, USA, October 19-22, 2021, pages 1–10. IEEE, 2021.

[HSSW10] Kevin Henshall, Peter Schachte, Harald Søndergaard, and Leigh Whiting.
An algorithm for affine approximation of binary decision diagrams. Chic. J.
Theor. Comput. Sci., 2010, 2010.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

[KM22] David Knichel and Amir Moradi. Low-latency hardware private circuits. In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 1799–1812. ACM Press, November 2022.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 787–816.
Springer, Heidelberg, December 2020.



584 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

[MCS22] Charles Momin, Gaëtan Cassiers, and François-Xavier Standaert. Hand-
crafting: Improving automated masking in hardware with manual opti-
mizations. Cryptology ePrint Archive, Report 2022/252, 2022. https:
//eprint.iacr.org/2022/252.

[Mil98] D. Michael Miller. An improved method for computing a generalized spectral
coefficient. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 17(3):233–
238, 1998.

[MKSM22] Nicolai Müller, David Knichel, Pascal Sasdrich, and Amir Moradi. Transitional
leakage in theory and practice unveiling security flaws in masked circuits.
IACR TCHES, 2022(2):266–288, 2022.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Com-
piler assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors,
CHES 2012, volume 7428 of LNCS, pages 58–75. Springer, Heidelberg, Septem-
ber 2012.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage
of masked CMOS gates. In Alfred Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 351–365. Springer, Heidelberg, February 2005.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In Josyula R. Rao and Berk
Sunar, editors, CHES 2005, volume 3659 of LNCS, pages 157–171. Springer,
Heidelberg, August / September 2005.

[MS16] Amir Moradi and Tobias Schneider. Side-channel analysis protection and
low-latency in action – case study of PRINCE and Midori –. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031
of LNCS, pages 517–547. Springer, Heidelberg, December 2016.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, ICICS 06, volume 4307 of LNCS, pages 529–545.
Springer, Heidelberg, December 2006.

[OMHE17] Inès Ben El Ouahma, Quentin L. Meunier, Karine Heydemann, and Em-
manuelle Encrenaz. Symbolic approach for side-channel resistance analysis of
masked assembly codes. In Ulrich Kühne, Jean-Luc Danger, and Sylvain Guil-
ley, editors, PROOFS 2017, 6th International Workshop on Security Proofs
for Embedded Systems, Taipei, Taiwan, September 29th, 2017, volume 49 of
EPiC Series in Computing, pages 17–32. EasyChair, 2017.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2,300 GE.
Journal of Cryptology, 24(2):322–345, April 2011.

[RBN+15a] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 764–783. Springer, Heidelberg, August 2015.

[RBN+15b] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. Cryptology ePrint Archive,
Report 2015/719, 2015. https://eprint.iacr.org/2015/719.

https://eprint.iacr.org/2022/252
https://eprint.iacr.org/2022/252
https://eprint.iacr.org/2015/719


Feng Zhou, Hua Chen, Limin Fan 585

[SDM23] Aein Rezaei Shahmirzadi, Siemen Dhooghe, and Amir Moradi. Low-latency
and low-randomness second-order masked cubic functions. IACR TCHES,
2023(1):113–152, 2023.

[SM21a] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes. IACR TCHES, 2021(1):305–342, 2021. https://tches.
iacr.org/index.php/TCHES/article/view/8736.

[SM21b] Aein Rezaei Shahmirzadi and Amir Moradi. Second-order SCA security
with almost no fresh randomness. IACR TCHES, 2021(3):708–755, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8990.

[Sny04] Wilson Snyder. Verilator and systemperl. In North American SystemC Users’
Group, Design Automation Conference, volume 79, pages 122–148, 2004.

[TN95] Mitchell A. Thornton and V. S. S. Nair. Efficient calculation of spectral
coefficients and their applications. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., 14(11):1328–1341, 1995.

[Tri03] Elena Trichina. Combinational logic design for AES subbyte transformation
on masked data. Cryptology ePrint Archive, Report 2003/236, 2003. https:
//eprint.iacr.org/2003/236.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient DPA-
resistant AES hardware architecture based on threshold implementation. In
Sylvain Guilley, editor, COSADE 2017, volume 10348 of LNCS, pages 50–64.
Springer, Heidelberg, April 2017.

[WGK13] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog syn-
thesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), volume 97, 2013.

[YCW+24] Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou, and Limin
Fan. Optimizing AES threshold implementation under the glitch-extended
probing model. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
43(7):1984–1997, 2024.

[ZGSW18] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. Scinfer: Refinement-based
verification of software countermeasures against side-channel attacks. In Hana
Chockler and Georg Weissenbacher, editors, Computer Aided Verification -
30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II,
volume 10982 of Lecture Notes in Computer Science, pages 157–177. Springer,
2018.

[ZSS+21] Sara Zarei, Aein Rezaei Shahmirzadi, Hadi Soleimany, Raziyeh Salarifard,
and Amir Moradi. Low-latency keccak at any arbitrary order. IACR
TCHES, 2021(4):388–411, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/9070.

https://tches.iacr.org/index.php/TCHES/article/view/8736
https://tches.iacr.org/index.php/TCHES/article/view/8736
https://tches.iacr.org/index.php/TCHES/article/view/8990
https://eprint.iacr.org/2003/236
https://eprint.iacr.org/2003/236
https://tches.iacr.org/index.php/TCHES/article/view/9070
https://tches.iacr.org/index.php/TCHES/article/view/9070

	Introduction
	Preliminaries
	Symbols and Notations
	Probability Distributions of Boolean Variables
	Masked Circuits
	Security Model
	Statistical Independence Check Based on ROBDDs

	Reduction Rules
	Auxiliary Data Structures
	Reduction Rules

	The Verification Tool - Prover
	Variable Ordering
	Verification of Standard and Glitch-Extended Probing Security
	Verification of Uniformity

	Experiments and Evaluations
	Benchmarks
	Evaluations for Different Variable Orderings
	Comparison with State-Of-The-Art Tools Over S-boxes
	Comparison with State-Of-The-Art Tools over Standard Gadgets
	Analysis on the Insecure Implementations

	Conclusion

