
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 275–313. DOI:10.46586/tches.v2025.i1.275-313

A High-performance NTT/MSM Accelerator for
Zero-knowledge Proof Using Load-balanced

Fully-pipelined Montgomery Multiplier

Xiangren Chen1, Bohan Yang1,*, Wenping Zhu1, Hanning Wang1, Qichao
Tao1, Shuying Yin1, Min Zhu2, Shaojun Wei1 and Leibo Liu1,*

1Beijing National Research Center for Information Science and Technology (BNRist), School of
Integrated Circuits, Tsinghua University, China.

2Wuxi Micro Innovation Integrated Circuit Design Co., Ltd.
chen-xr23@mails.tsinghua.edu.cn,{bohanyang,zhuwp,wanghn,qichaotao,yinshuying,wsj,

liulb}@tsinghua.edu.cn;zhumin@mucse.com
* Corresponding Author.

Abstract. Zero-knowledge proof (ZKP) is an attractive cryptographic paradigm that
allows a party to prove the correctness of a given statement without revealing any
additional information. It offers both computation integrity and privacy, witnessing
many celebrated deployments, such as computation outsourcing and cryptocurrencies.
Recent general-purpose ZKP schemes, e.g., zero-knowledge succinct non-interactive
argument of knowledge (zk-SNARK), suffer from time-consuming proof generation,
which is mainly bottlenecked by the large-scale number theoretic transformation
(NTT) and multi-scalar point multiplication (MSM). To boost its wide application,
great interest has been shown in expediting the proof generation on various platforms
like GPU, FPGA and ASIC.
So far as we know, current works on the hardware designs for ZKP employ two
separated data-paths for NTT and MSM, overlooking the potential of resource reusage.
In this work, we particularly explore the feasibility and profit of implementing both
NTT and MSM with a unified and high-performance hardware architecture. For the
crucial operator design, we propose a dual-precision, load-balanced and fully-pipelined
Montgomery multiplier (LBFP MM) by introducing the new mixed-radix technique
and improving the prior quotient-decoupled strategy. Collectively, we also integrate
orthogonal ideas to further enhance the performance of LBFP MM, including the
customized constant multiplication, truncated LSB/MSB multiplication/addition
and Karatsuba technique. On top of that, we present the unified, scalable and high-
performance hardware architecture that conducts both NTT and MSM in a versatile
pipelined execution mechanism, intensively sharing the common computation and
memory resource. The proposed accelerator manages to overlap the on-chip memory
computation with off-chip memory access, considerably reducing the overall cycle
counts for NTT and MSM.
We showcase the implementation of modular multiplier and overall architecture on the
BLS12-381 elliptic curve for zk-SNARK. Extensive experiments are carried out under
TSMC 28nm synthesis and similar simulation set, which demonstrate impressive
improvements: (1) the proposed LBFP MM obtains 1.8× speed-up and 1.3× less area
cost versus the state-of-the-art design; (2) the unified accelerator achieves 12.1× and
5.8× acceleration for NTT and MSM while also consumes 4.3× lower overall on-chip
area overhead, when compared to the most related and advanced work PipeZK.

Keywords: ZKP · NTT · Montgomery multiplication · MSM

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.275-313
mailto:chen-xr23@mails.tsinghua.edu.cn, bohanyang@tsinghua.edu.cn, zhuwp@tsinghua.edu.cn, wanghn@tsinghua.edu.cn, qichaotao@tsinghua.edu.cn, yinshuying@tsinghua.edu.cn, wsj@tsinghua.edu.cn, liulb@tsinghua.edu.cn, zhumin@mucse.com
mailto:chen-xr23@mails.tsinghua.edu.cn, bohanyang@tsinghua.edu.cn, zhuwp@tsinghua.edu.cn, wanghn@tsinghua.edu.cn, qichaotao@tsinghua.edu.cn, yinshuying@tsinghua.edu.cn, wsj@tsinghua.edu.cn, liulb@tsinghua.edu.cn, zhumin@mucse.com
http://creativecommons.org/licenses/by/4.0/

276 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

1 Introduction
Introduced in the 1980s by Goldwasser et al. [GMR85], the concept of zero-knowledge
proof allows one party to prove to another party that a certain statement is true without
revealing any extra information. More formally, the statement refers to F (x,w) = true
with F being the function to be verified, x being the public inputs and w being the
secret inputs only known by the prover. Within the last decade, general-purpose and
non-interactive zero-knowledge proof schemes have made the jump from theory to practice.
For instance, an efficient privacy protocol known as zk-SNARK (zero-knowledge Succinct
Non-interactive ARgument of Knowledge) [Gro16, COS20, GWC19] has recently drawn
much attention from academia and industry. Particularly, the property of succinctness
is embodied by the fact that the size of proof is constrained to hundreds of bytes (e.g.,
192 bytes [Gro16]) and the verification time is almost constant, regardless of the sizes of
function F and inputs x/w. Other notable ZKP schemes encompass hash-based zkSTARK
(Zero-Knowledge Scalable Transparent Argument of Knowledge) [BBHR19] that avoids the
necessity of trusted setup and could resist the attack of quantum computer, and code-based
Plonky2 [Tea22] that realizes highly performant recursion over Goldilocks field, and so
forth. Recently, ZKP has witnessed many celebrated deployments, including computation
outsourcing [ZGK+17], electronic voting [PR18], cryptocurrencies [BFV19], and machine
learning [XZL+23]. The Defense Advanced Research Projects Agency (DARPA) also
launches the Securing Information for Encrypted Verification and Evaluation (SIEVE)
program that generates ZKP for defense capability and vulnerability disclosure [dar19].

However, the remarkable power of ZKP comes at a huge overhead within proof genera-
tion, mainly resulting from elliptic curve related computation like MSM or polynomial
computations. Since almost all modern ZKP systems are built on polynomial commitment
schemes, NTT ends up being one of the major bottlenecks in the proof-generation process,
especially for those based on error-correcting codes, such as STARK and Plonky2. In
pairing-based SNARK schemes, NTT and MSM respectively takes up approximately 30%
and 70% time of the overall proof-generation process on software platforms [LWY+23].
The modular multiplication of large data-width serves as the crucial building block for
both MSM and NTT as well. Undoubtedly, accelerating NTT and MSM is of great
significance to enabling real-world infrastructures and capturing more complex applications
for ZKP-related systems.

Related works on NTT & MSM. There is a succession of excellent works on
devising individual hardware sub-systems for ZKP-oriented NTT [WG23, HMR23] and
MSM [RDQY24, ZHLH23], respectively. However, the feasibility and profit of implementing
them on the shared architecture are never discussed up to now. Compared to NTT used
in the post-quantum cryptography (PQC) and fully homomorphic encryption (FHE),
significantly larger vector length and bit-width feature that of ZKP, reminiscent of the
massive off-chip memory access. As a consequence, data movement between off-chip memory
and on-chip scratchpad has to be taken into consideration, which in turn influences the
design strategy of on-chip NTT core. There are many large-scale NTT architectures for
FHE [SFK+21, KKK+22, YZF+23, MAK+23], which provide valuable inspirations for
the realm of ZKP. In contrast, the performance bottleneck of MSM lies in the on-chip
computation instead of the off-chip memory access like NTT. Besides, the data-flow and
execution time of MSM depend on the concrete data distribution, which is deemed to be
dynamic and unpredictable.

PipeZK [ZWZ+21] marks the first attempt at crafting NTT and MSM hardware
designs for zk-SNARK. It adopts the four-step NTT version and introduces a single-path
delay feedback (SDF) pipelined architecture to ameliorate memory access pressure. But
this architecture depletes substantial First-In-First-Out (FIFOs) to orchestrate address
intervals at every stage of NTT, which yields a mere 50% hardware utilization. As for
the MSM kernel, PipeZK adopts the Pippenger algorithm and presents a dynamic work

Xiangren Chen et al. 277

dispatch mechanism to share the heavy point adder units. Zprize2022 [Pru22] launches
two special tracks for hardware acceleration of NTT and MSM on FPGA. However, the
evaluation criteria primarily emphasize speed enhancement while overlooking optimizations
of area overhead. The top contenders embrace the common strategy of combining parallel
on-chip NTT architecture with dual-tier memory architecture. Notably, the leading team,
Supranational, achieves remarkable feats, computing 224 64-bit point in just around 2
milliseconds for NTT. But the selected 64-bit NTT modulus falls short of accommodating
pairing-based zk-SNARK, which typically demands modulus widths exceeding 253-bit.
Also, the first-place team at MSM track presents a split CPU-FPGA MSM engine, which
utilizes the fully-pipelined, strongly unified mixed point adder based on the Scaled Twisted
Edwards curve [RDQY24]. The adopted point addition formula reduces the number of
modular multiplication, but it should be performed on condition that the resulting sum is
added to the raw point with affine coordinate. Thus, adding two resulting points both with
extended coordinates is not supported by the hardware part. The recent multi-bank based
MSM architecture [LZD+24], coupled with optimized scheduling mechanism, presents
sizable performance gain. But it takes no account of the practical data movement from
DRAM to on-chip SRAM, which in turn influences how the overall latency is calculated.
PipeMSM [Xav22] also presents a pipelined design for MSM on FPGA, which is built
upon the complete point addition formula with modified Barret modular multipliers.
CycloneMSM [ABC+22] develops a heuristic-based scheduler to manipulate the order of
operations during bucket aggregation, decently handling the colliding points to increase
throughput. Nevertheless, the underlying large-width modular multipliers in these works
still leave some room for improvement, which plays a vital role in the overall performance.

Contributions. Given that two separated hardware data-paths for NTT and MSM
consume tremendous computation and memory resource, it is feasible and profitable to
devise a unified and high-performance hardware architecture for them. Building on this
holistic insight, our main contributions are summarized as follows.

• We analyse the role of NTT and MSM within a typical workflow of zk-SNARK
protocol, further demonstrating that the data dependency between NTT and MSM
accounts for the design rationale behind unification. Then, we identify several design
challenges that are specific for a unified and efficient architecture supporting both
NTT and MSM. (Section 2)

• We discover the inherent issue within prevailing Montgomery algorithms, i.e., the
severe load imbalance when directly implemented in a fully-pipelined manner. Cru-
cially, a simple, modularized yet effective technique called as mixed-radix form is
proposed to tackle this issue, considerably saving pipeline registers and improving
the area efficiency. Furthermore, we improve the prior quotient-delayed technique by
achieving the lower bound of iteration count and circumventing extra post-correction,
modifying the critical path at the algorithm level. Based on these new techniques,
we develop the mixed-radix LBFP MM that supports dual-precision modular multi-
plication for both NTT and MSM. Collectively, we also integrate other optimization
techniques to enhance the performance of LBFP MM, including the customized
constant multiplication, truncated LSB/MSB multiplication/addition and Karatsuba
technique. (Section 3)

• For the first time, we present a unified and high-performance architecture that
supports both NTT and MSM by making a series of optimizations. In particular,
a versatile ping-pong scheduling for NTT and a dedicated load-aware arbitration
mechanism for MSM are proposed to maximize the resource utilization. A novel
configurable PE array and compact memory partition strategy are proposed to
intensively reduce the entire area overhead. (Section 4)

278 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

• We evaluate the implementation of modular multiplier and overall architecture
instantiated with the BLS12-381 curve. The experimental results are carried out
under TSMC 28nm synthesis and similar simulation set, which achieve record-
breaking improvements: (1) the LBFP MM obtains 1.8× speed-up and 1.3× less
area cost versus the state-of-the-art; (2) the unified accelerator delivers 12.1× and
5.8× acceleration for NTT and MSM while also saves 4.3× area overhead, when
compared to the state-of-the-art counterpart PipeZK. (Section 5)

2 Preliminaries
2.1 The Role of NTT & MSM within ZKP
Both NTT and MSM stand as the core algebraic operations within many ZKP protocols.
In this section, we use one of the most mature and prominent ZKP schemes, zk-SNARK,
as an example to illustrate its specific role in the protocol. Generally, this protocol consists
of two parties: a prover and a verifier. The prover can convince the verifier that, "Given a
function F and input ~a, I know a secret witness ~b such that F (~a,~b) = true," by generating
a zk-SNARK proof. Three notable properties are provided by zk-SNARK: (1) succinctness,
i.e., small proof sizes (< 1KB) and fast verification (< 10ms) independent of the application
complexity F , (2) non-interactive, i.e., one-time message passing from the prover to the
verifier, and (3) zero knowledge, meaning that the proof reveals no information about the
secret ~b beyond the statement itself.

The parameters for pairing-based zk-SNARK schemes are derived from pairing-friendly
elliptic curves, such as BLS12-381 [WB19] and BLS12-377 [AV20]. For instance, the
equation of the BLS12-381 elliptic curve is defined as E(Fq) : y2 = x3 + 4 mod q, where
q is a 381-bit modulus, signifying that the coordinates of point P = (x, y) (or generator
G1 = (x, y)) should take values from finite field Fq. The typical group operations on
elliptic curves include point doubling (PDBL) P + P , point addition (PADD) P1 + P2,
and scalar point multiplication s ·G, where the scalar s is a 255-bit integer drawn from
another finite field Fm, and G denotes point generator for the elliptic curve. Another
twisted BLS12-381 curve is defined as: E(Fq2) : y2 = x3 + 4 · (i+ 1), with point generator
G2 = (x0 + i · x1, y0 + i · y1) residing on Fq2 . In zk-SNARK schemes, the computational
subject of NTT refers to polynomials comprised of coefficients over the finite field Fm,
while the MSM is performed between the scalar vector over Fm and point vector over
Fq/Fq2 . As a non-interactive ZKP protocol, zk-SNARK is fundamentally structured into
three stages, with an overarching workflow depicted in Figure 1.

Application Program:

 𝑭(𝑝𝑢𝑏𝑙𝑖𝑐 𝑖𝑛𝑝𝑢𝑡 𝒂, 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 𝒃)

R1CS: for #n gates, #m inputs

matrix 𝑼𝒏×𝒎, 𝑽𝒏×𝒎, 𝑾𝒏×𝒎

QAP: for i = 0 to m-1

degree-n poly 𝒖𝒊(𝒙), 𝒗𝒊(𝒙), 𝒘𝒊(𝒙)

Linear Combination:

𝒖 𝒙 , 𝒗(𝒙), 𝒘(𝒙)

CRS 𝝈:

𝑺𝑲(𝑴, 𝑵), 𝑷𝑲, 𝒈(𝒙)

1. One-time trusted setup

co
m

p
ile

in
terp

o
latio

n

(IN
T

T
)

+ random

parameters

1

2

3

4

5

INTT
coset

NTT

INTT

INTT

coset

NTT

coset

NTT poly.

mult. poly.

sub.

coset

INTT

𝒖(𝒙)

𝒗(𝒙)

𝒘(𝒙)

𝒉(𝒙)

step1: compute the quotinent polynomial h(x)

𝑶 = ෍

𝒊=𝟎

𝒏

𝒔𝒊 ⋅ 𝑷𝒊

𝒔𝒊 ∈ 𝒉, 𝒈

 𝑷𝒊 ∈ {𝑴, 𝑵}

step2: compute the proof π

𝒈(𝒙)

𝑺𝑲

𝝅 =
(𝑨, 𝑩, 𝑪)

2. Generate Proof π

𝒆 𝑨, 𝑩
==

𝒆(𝑪, 𝑮𝟐)𝑷𝑲

π

𝒂

0/1

3. Verify

MSM

pairing

Figure 1: The typical work flow of zk-SNARK.

One-time trusted setup. For a given circuit program F with m inputs, a trusted

Xiangren Chen et al. 279

third party initially compiles it into a series of simple 2-input-1-output circuit gates,
forming the so-called rank-1 constraint system (R1CS), which is subsequently transformed
into three n × m binary matrices Un×m, Vn×m,Wn×m, with n on the order of 220 in
typical applications. Afterward, each column of the matrices is subject to interpolation
transformations based on INTT, yielding the quadratic arithmetic program (QAP) in degree
n-1 polynomial form: ui(x), vi(x), wi(x) for i = 0, 1, ...,m− 1. Finally, QAPs are further
normalized into three polynomials u(x), v(x), w(x) by performing linear combination with
input vectors: u(x) =

∑m
i=0 ai ·ui(x), v(x) =

∑m
i=0 ai · vi(x), w(x) =

∑m
i=0 ai ·wi(x). Also,

a series of randomly chosen security parameters are used along with QAPs to generate
the common reference string (CRS) σ for the entire ZKP system, which includes the
polynomial g(x), secret key (SK) and public key (PK) utilized by the prover and verifier.

Proving and verifying phases. The proving phase can be roughly divided into two
steps, each primarily involving polynomial calculations and MSMs. The objective of the first
step is to compute the quotient polynomial h(x) = u(x)·v(x)−w(x)

xn−1 . First, we need to utilize
coset NTT to determine the point-value expressions of polynomials u(x), v(x) and w(x).
Subsequently, operations including vector dot products and polynomial substractions are
applied to the NTT-computed results to obtain the point-value expression of h(x). Finally,
the coset INTT is employed to obtain the coefficient vector of the quotient polynomial
h(x). In the second step of the proving phase, the MSM is conducted among the output
of the first step h(x), g(x) and the private key SK (consists of multiple point vectors
{ ~M, ~N}), which generates a concise proof π with short size (e.g., 192-bit for BLS12-381
curve). Specifically, each MSM task can be expressed as: O =

∑n
i=0 si · Pi, where the

scalar vector ~s is taken from ~h or ~g, and the point vector ~P refers to ~M or ~N , respectively.
The verifying phase takes in the public key PK, the proof π and the public inputs ~a,
leveraging the bilinear property of pairing to verify the correctness of proof. Typically,
this computation process is comprised of Miller loop and final exponentiation, which can
be completed within a few milliseconds.

2.2 Motivations & Design Challenges
Motivations. Several prior arts [ZWZ+21, Xav22] already reveal that designing separated
data-paths for NTT and MSM incurs significant area overhead. From the perspective of
data-flow dependency, NTT should precede MSM to compute the quotient polynomial h(x),
based on which MSM is conducted between the coefficient vector ~h and the precomputed
point vector ~P , as shown in Section 2.1. In other words, NTT and MSM over G1
[LFG23] have to be executed serially, which results in MSM-related computation resources
underutilized during NTT computation. One possible counter-example is the scenario that
NTT could be performed for another proof when MSM is utilized to compute the current
proof. However, concurrently performing two proof-generation processes would require
two individual setup processes, which not only doubles the computation and memory
requirement but also complicates the hardware controller design. In fact, most previous
works [MXS+23, ZWZ+21] only compute one proof at a time, which can cater to many
real-world application scenarios. On the other hand, even if both NTT and MSM could
run in parallel, the overall speedup would still be minor. Because the computation latency
occupied by NTT after hardware acceleration will be much smaller than that of MSM
[ZWZ+21], making the overall performance primarily limited by the latency of MSM over
G1. Therefore, we seek to devise a unified and high-performance hardware architecture
by reusing and configuring the computation and memory resources, solidly improving the
area efficiency over state-of-the-art designs.

Challenges. However, implementing NTT and MSM with a unified architecture poses
new design challenges. For one thing, existing NTT and MSM computation paradigms
have much difference in terms of data-flow and memory organization. The data-flow of

280 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

NTT follows a fixed and iterative butterfly computation pattern, whose design challenges
involve addressing potential bank access conflicts due to varying address strides. In
contrast, the data-flow of MSM cannot be predicted in advance, which is related to the
distribution of scalar vector. The core issue is the sophisticated controller design that
manages the sources of inputs for the point adder unit to improve the hardware utilization.
Besides, the pipelined SDF/MDC NTT architecture in prior works adopts segmented FIFOs
with varying sizes, which are not conducive to a unified memory organization [ZWZ+21].
For another thing, the bit widths of the underlying arithmetic units for NTT and MSM
are typically quite different. Taking the BLS12-381 curve as an example, the NTT is
performed under 255-bit modulus from scalar field, whereas the coordinates of point vector
in MSM utilize the 381-bit modulus. Hence, dual-precision arithmetic units are required
to serve both MSM and NTT. Compared to modular addition and subtraction, designing
a multi-precision modular multiplier is more challenging because we cannot simply pad
the operands with zeros due to the impact of modular reduction. Although previous works
employ the scalable Coarsely Integrated Operand Scanning (CIOS) Montgomery algorithm
to implement multi-precision modular multipliers, this design approach introduces feedback
loops into the pipelined data-path and thus is not fully pipelined. It is underscored that
the modular multiplier with fully-pipelined property can take in one data point per cycle
to unlock the theoretically optimal throughput, otherwise the cycle count proportionally
increases with the folded degree. In summary, there still remains a conspicuous absence of
area-efficient, fully-pipelined and dual-precision modular multiplier for large modulus.

2.3 Four-step NTT
Similar to FHE, ZKP serves as an application-layer protocol and thus its computational
parameter closely correlates with the scale of the circuit program to be proved. As of
typical applications, the vector length of NTT is on the order of 220, rendering such large
amount of data unfeasible to be entirely stored into on-chip memory. Of special interest is
the four-step NTT version which decomposes the large-scale one-dimension vector into
two-dimensional matrix, enabling us to perform independent and parallel sub-NTTs for
each row or column. Moreover, this arrangement allows on-chip memory to accommodate
several rows or columns of data only, alleviating the pressure on memory usage. Adopting
higher dimensional (e.g., five-step) NTT variants can further reduce the size of sub-NTTs,
but it will complicate the access pattern, entail more transposition cost and increase the
number of multiplications [KKK+22].

𝑎7
𝑎11
𝑎15

𝑎13
𝑎9

𝑎4
𝑎8
𝑎12 𝑎3𝐴3

radix-4

NTT

𝑎0 𝐴0
𝐴8
𝐴4
𝐴12

H
ad

am
ard

P
ro

d
u
ct

radix-4

NTT

𝑎1
𝑎5

𝐴1
𝐴9
𝐴5
𝐴13

H
ad

am
ard

P
ro

d
u
ct

radix-4

NTT

𝑎3 𝐴3
𝐴11
𝐴7
𝐴15

H
ad

am
ard

P
ro

d
u
ct

… …

M
atrix

 T
ran

sp
o

sitio
n

𝐴0

𝐴1
𝐴2

𝐴7

𝐴4

𝐴5
𝐴6

𝐴15

𝐴12

𝐴13
𝐴14

radix-4

INTT

radix-4

INTT

radix-4

INTT

𝑎0
𝑎1
𝑎2

𝑎4
𝑎5
𝑎6
𝑎7

𝑎12
𝑎13
𝑎14
𝑎15

…

step 1 step 2 step 3 step 4

Figure 2: The basic form of four-step 16-point NTT algorithm.

In essence, ZKP-oriented NTT represents a variant of the Fast Fourier Transform
(FFT) over the finite field, whose objective is to reduce the complexity of the following
matrix-vector multiplication from O(N2) to O(NlogN): Ai =

∑N−1
j=0 aj · ωijN mod M, i =

0, 1, ..., N − 1. Here, ωN is the N -th root of unity over the finite field FM, whose powers

Xiangren Chen et al. 281

are also known as the twiddle factors. Previous researchers explore various approaches,
such as divide-and-conquer strategy [CT65], index-mapping perspective [Sch96] and tensor
technique [TAL93], to derive different variants of FFT, including the mixed-radix, multi-
dimension(step) and Good’s trick versions and so on. For the sake of clarity, we present
the workflow of 16-point four-step NTT in Figure 2, while the concrete index-mapping
based derivation process for four-step NTT is shown in Appendix C.

Algorithm 1 Pippenger algorithm [Pip76]
Input: ~s = (s0, s1, ..., sn−1), with si being λ-bit scalar over FM. Choosing the window size as c-bit.
h = dλ

c
e. si,j = si[j·c : j·c+c−1] is the j-th c-bit chunk of si, with j = 0, 1, ..., h−1. ~P = (P0, P1, ..., Pn−1),

where Pi is the curve point with coordinates over FQ.
Output: O =

∑n−1
i=0 si · Pi.

1: O = O
2: for j = h− 1 to 0 do
3: B = (B0, B1, ..., B2c−1) = (O,O, ...,O).
4: Phase 1. Bucket accumulation
5: for i = 0 to n− 1 do
6: ID = si,j
7: BID = PADD(BID, Pi) . Bt = SUM(Pi|si,j == t)
8: end for
9: Phase 2. Bucket aggregation
10: Gj = O, Tj = O
11: for k = 0 to 2c − 1 do
12: for m = 2c − 1 to k do
13: Tj = PADD(Tj , Bm)
14: Gj = PADD(Gj , Tj) . Gj =

∑2c−1
t=1 t ·Bt

15: end for
16: end for
17: Phase 3. Group aggregation
18: for i = 0 to c− 1 do
19: O = PADD(O,O)
20: end for
21: O = PADD(O,Gj) . O = 2jc ·O +Gj
22: end for
23: return O

2.4 Pippenger Algorithm
The Pippenger algorithm, also called as bucket method [BDLO12], is to MSM what NTT
is to polynomial multiplication. It is essentially the variant of distributed arithmetic [BS91]
used to efficiently compute the inner product. Recently, numerous variants of Pippenger
algorithm are developed to achieve elegant parallelism and computation-memory trade-off
[LWY+23, ZHY+24]. But most of them are mainly tailored for the software platforms
like CPU and GPU. In our opinion, the basic form of Pippenger algorithm still remains
competitive for hardware implementation since it requires less memory footprint, relatively
regular controller and no precomputation.

As shown in Algorithm 1, the Pippenger algorithm can be divided into three phases,
which essentially perform the distributed arithmetic [BS91] as below:

O =
n−1∑
i=0

si · Pi =
n−1∑
i=0

h−1∑
j=0

2jcsi,j · Pi =
h−1∑
j=0

2jc
n−1∑
i=0

si,j · Pi =
h−1∑
j=0

2jc ·Gj (1)

At phase 1 named bucket accumulation, each curve point Pi along with scalar chunk si,j is
accordingly accumulated with the point Bt stored in bucket t (= si,j). At phase 2, all the
curve points are sorted and compressed into their buckets, so that the bucket aggregation
is performed by adding up the weighted points stored in each bucket to obtain Gj . This
weighted summation can be specifically handled with the addition chain as shown in line

282 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

10-16 of Algorithm 1. At phase 3, each bucket aggregated result Gj weighted by 2jc is
iteratively added up to calculate the final result.

2.5 Montgomery Modular Multiplication
The Montgomery modular multiplication can at least date back to [Mon85], whose funda-
mental principle is to add a specific multiple of modulus q ·M to the w×w-bit multiplication
result S = A ·B, so that the half lower part of S + q ·M turns out to be zeros. Herein, q
is the quotient determined as q = (S mod R) ·M ′ mod R, with R being the radix 2w and
M ′ = −M−1 mod R. In this way, the final modular reduction is replaced with a simple
shift operation, which turns out S = (S+ q ·M) >> w mod M = A ·B ·R−1 mod M . This
intricate reduction method, popularly applied in both hardware and software platforms
[Lon23], circumvents the time-consuming division inherent in straightforward reduction
method, and could be implemented in a constant-time manner.

Sugar of modulus. The high-radix Montgomery MM, as illustrated in Algorithm 2,
is also widely adopted to trade speed with area. At this time, the operand A is divided
into several m-bit chunks, with each iteration scanning a single chunk Ai alongside the
entire operand B as the input. Accordingly, the bit-width of quotient q is shrunk to
m-bit. The NTT-friendly modulus M adheres to the condition M mod 2n = 1, with 2n
being the vector length. Thus, the modulus can be expressed as M = t · 2n + 1, which is
similar to the Proth number or Montgomery-friendly number apart from the difference
that t is a large dense prime number. This specific form lends itself to the high-radix
Montgomery reduction method. Because the constant factor is given by M ′ = −1 mod R,
if the Montgomery radix is chosen as R = 2m = 2n. Obviously, such parameter selection
can reduce one multiplication cost in the iterative computation, i.e., the calculation of the
quotient is almost cost-free: q = −S mod R. This optimization trick brings the advantage
of reducing both the area overhead and critical path, which is further enhanced when
the bit-width of modulus becomes large. Interestingly enough, we also find that the
coordinate modulus Q of some pairing-friendly curves, such as BLS12-381, BLS12-377, has
the similarly low-cost quotient determination even if it is not the NTT-friendly modulus.
Based on our review, this is the first work to unleash the power of specific ZKP moduli by
exploring the low-cost quotient calculation.

Algorithm 2 High-radix Montgomery MM [KKAK96]
Input: w-bit multiplicand A = (A0, A1, ..., An−1)m, multiplier B, modulus M . radix R = 2m and
n = dw/me, M ′ = −M−1 mod R.
Output: w-bit S = A ·B ·R−1 mod M
1: S(0) = 0
2: for i = 0 to n− 1 do
3: S(i) = S(i) +Ai ·B . the 1st m× w-bit multiplication.
4: qi = (S(i) mod R) ·M ′ mod R . the 2nd m×m-bit modular multiplication.
5: S(i+1) = (S(i) + qi ·M)/R . the 3rd m× w-bit multiplication.
6: end for
7: if S(n) > M then
8: S = S(n) −M
9: end if
10: return S

3 Proposed Dual-precision LBFP MM
3.1 Analysis on Existing Montgomery MM
Identifying the load imbalance. To prevent misunderstandings, we highlight that
the fully-pipelined property refers to the pipelined data-path without any feedback loop
under the context of this work. The extreme case opposite to fully-pipelined design is the

Xiangren Chen et al. 283

digit-serial style [MR18], with the partially-pipelined design located between two extremes.
The fully-pipelined Montgomery multipliers in prior works [SNF+19, HMR23, MK22] are
implemented by directly unrolling the fixed-radix Montgomery algorithm as shown in
Figure 3. However, this architecture presents some deficiencies that remained overlooked
for a long time. On one hand, as marked by the red box ¬ in Figure 3, the multiplication
of Ai · B should be completed before the multiples of modulus q ·M . Such inherent
data dependency easily results in a prolonged critical path, necessitating the insertion
of numerous pipeline registers to attain high frequency. On the other hand, as marked
by the red box ­, to synchronize the operands before the next iteration, approximately
i · d pipeline registers need to be inserted for the result of Ai · B. This implies that the
register overhead gradually increases with iteration count i, thereby resulting in a serious
imbalance in the pipeline workload. As the bit-width of the modulus increases, these
drawbacks become more pronounced.

x
𝑨𝟎

𝑩

x
𝑨𝟏

𝑩

+ x x A
 &

 S

𝑴’ 𝑴

+ x x A
 &

 S

𝑴’ 𝑴

+ x x A
 &

 S

𝑴’ 𝑴

x
𝑨𝒏−𝟏

𝑩

…
…

𝟎

𝑺(𝟏)

𝑺(𝟐)

𝑺(𝒏−𝟏)

pipeline stage = 𝒅

shift reg 1 ≈ 𝒅 regs

𝑺(𝒏)
Tu

ne

𝑪

1 serial data dependency

2 imbalanced pipelined workload

x

x

+

A
 &

 S
T

u
n

e

mult.

mult.

mod R

addition

addition

& shift

correction

shift reg n-1 ≈ 𝒏 − 𝟏 ⋅ 𝒅 regs

Figure 3: Observations on the typical fully-pipelined Montgomery MM.

Limitations of classic quotient-delayed technique. The data dependency within
Algorithm 2 is summarized as three parts. (1) The immediate result S(i) should be
computed before the quotient determination qi = (S(i) mod R) · M ′ mod R; (2) The
quotient determination should precede the multiples of modulus qi ·M ; (3) The computation
of Ai · B is used to update the immediate result S(i). Consequently, the critical path
is three multiplications and two additions. Prior work [Oru95] proposes the so-called
quotient-delayed technique to decouple the data dependency between computations of
intermediate result and quotient. Specifically, this technique utilizes the quotient qi−d
(obtained from the (i−d)-th iteration) to compute qi−d ·M , so that Ai ·B can be performed
in parallel with qi−d ·M at the current i-th iteration. However, this technique will increase
the iteration count and incur additional post-processing, which are required to adjust
the final result back to the range [0,M). Therefore, subsequent works [SNF+19, BRM19]
typically choose a delay degree of d = 1 to make the added cost minimal. The recent work
[ZCP23] presents an alternative algorithm that decouples the data dependency meanwhile
avoiding the indefinite number of post-processing, but it appears to double the bit-width of
quotient. So far as we know, none of the prior Montgomery algorithms can simultaneously
meet the following conditions: (1) The computations of q ·M and Ai ·B are done in parallel;
(2) The final reduction result lies in a constant range without additional post-correction
[Oru95]; (3) The bit-width of quotient will not be enlarged [ZCP23]; (4) The iteration
count is increased no more than once.

3.2 Proposed Modularized and Efficient Techniques
Improved quotient-decoupled technique. Motivated by the limitations of existing
quotient-delayed technique, we propose two new alternative methods that not only break
the data dependency but also meet the aforementioned conditions. The first method
resorts to only rearranging the order of iterative computations, whereas the second one
consists in changing the iterative computation while still maintaining the original iterative

284 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

order. For brevity, this work elaborates the principle of the first method. It is observed
from the Algorithm 2 that the initial value S = 0 and the relationship between S(i+1) and
S(i) can be iteratively expressed as:

S(1) = (A0 ·B + q0 ·M)/R

S(2) = (A1 ·B + q1 ·M + S(1))/R = (A1 ·B + q1 ·M)/R+ (A0 ·B + q0 ·M)/R2

...

S(i+1) = (Ai+1 ·B + qi+1 ·M + S(i))/R

= (Ai+1 ·B + qi+1 ·M)/R+ (Ai ·B + qi ·M)/R2 + ...+ (A0 ·B + q0 ·M)/Ri+1

(2)

Interestingly, we find that if the qi ·M at current iteration is moved to the next iteration,
then anther periodical iteration behavior can also be formed as:

S(0) = A0 ·B

S(1) = (A1 ·B ·R+ q0 ·M + S(0))/R = A1 ·B + (A0 ·B + q0 ·M)/R

S(2) = (A2 ·B ·R+ q1 ·M + S(1))/R = A2 ·B + (A1 ·B + q1 ·M)/R+ (A0 ·B + q0 ·M)/R2

...

S(i+1) = (Ai+1 ·B ·R+ qi+1 ·M + S(i))/R

= Ai+1 ·B + (Ai ·B + qi ·M)/R+ ...+ (A0 ·B + q0 ·M)/Ri+1

(3)

In this way, the computations of qi−1 ·M and Ai ·B can be performed in parallel. Compared
to the previous arts, we reformulate the widely used quotient-delayed technique, crucially
capturing the lower bound of iteration count.

Proposed load balancing technique. Although decoupling the quotient determi-
nation helps alleviate the load imbalance issue, we further propose a simple yet effective
method to augment the profit. Despite its broader generality, the method is analyzed
in the context of Montgomery multiplication, since it is prevailing and exhibits strong
synergy with modulus from pairing (§2.5). The core idea is in similar fashion to the square
root carry select adder that increases the bit-width of sub-adder with carry propagation
stages [HCG05]. In this manner, the accumulated carry propagation delay until stage i
is balanced by correspondingly amplifying the bit-width of sub-adder at stage i. Hence,
the intuitive imitation is to gradually increase the bit-width of sub-multiplication Ai ·B
with stage i, so that the accumulated pipeline registers can be fully used to pipeline the
sub-multiplication, leading to a more balanced pipeline partitioning. However, due to
the impact of extra modular reduction, the analogous version is non-trivial. Expanding
upon this discovery, the w-bit multiplicand A is divided into a chunk vector based on
the mixed-radix Ri = 2ri , and needs to meet the condition: R0 ≤ R1 ≤ ... ≤ Rn−1.
Then, we figure out that the matched constant factor for each Ai · B is calculated as
[M ′i]ri

= −M−1 mod Ri. In the following, we will prove that the Montgomery algorithm is
"radix-friendly", which indicates that the iterative computation based on different radices
can be linearly assembled to obtain the final result correctly.

Putting it together. The proposed two techniques are orthogonal to each other,
and can be combined to generate the new load-balanced Montgomery algorithm with
decoupled quotient determination, as shown in Algorithm 3. These two techniques are also
modularized and potentially beneficial for the Barret reduction algorithm. The radices Ri
are carefully selected to make [M ′i]ri

intensively sparse, thereby lowering the multiplication
cost for determining the quotient (at line 10 of Algorithm 3). Recalling that the modulus
used in zk-SNARK is in form of M = t · 2N + 1, the feasible choice for Ri is the value that
can be evenly divided by 2N or has common dividers with 2N . Additionally, the truncated
addition is also applied to the final addition within each iteration, which is expressed as:

S(i) = (S(i−1) + [qi−1]ri−1 ·M)/Ri−1 + [Ai]ri ·B

= S(i−1)/Ri−1 + ([qi−1]ri−1 ·M)/Ri−1 + (t ! = 0) + [Ai]ri ·B, where t = S(i−1) mod Ri−1
(4)

This shift-before-addition strategy at line 12 of Algorithm 3 helps reduce the width of

Xiangren Chen et al. 285

addition and lower area cost. To confirm the correctness of two proposed techniques, we
make a dedicated proof as below.

Algorithm 3 Proposed Load-balanced Montgomery MM
Input: w-bit multiplicand A, multiplier B, modulusM . Montgomery radix R = 2w, Mixed radix
Ri = 2ri , i = 0, 1, ..., n−1. Usually, we select: 0 = r0 ≤ r1 ≤ ... ≤ rn−1. [M ′i]ri = −M−1 mod Ri.
Output: S = A ·B ·R−1 mod M .
1: Perform preprocess:
2: Defining the Montgomery mixed radix as R = 2w = (r0, r1, ..., rn−1), Ri = 2ri (0 ≤ i ≤ n− 1).

Then, we have: w =
∑n−1

i=0 ri, R =
∏n−1
i=0 Ri.

3: Express the w-bit multiplicand A with mixed-radix form: A = ([A0]r0 , [A1]r1 , ..., [An−1]rn−1).
Then, we have: 0 ≤ [Ai]ri ≤ Ri − 1, A =

∑n−1
k=0 ([Ak]rk ·

∏k

j=0 Rj).
4: Perform Montgomery modular multiplication:
5: /*Initialization*/
6: S(0) = [A0]r0 ·B
7: /*Iteration*/
8: for i = 1 to n− 1 do
9: t = S(i−1) mod Ri
10: [qi−1]ri−1 = t · [M ′i−1]ri−1 mod Ri−1

11: Z = t == 0 ? 0 : 1 . For reducing the bit-width of final addition.
12: S(i) = S(i−1)/Ri−1 + [Ai]ri ·B + ([qi−1]ri−1 ·M)/Ri−1 + Z . Two parallel multipliers.
13: end for
14: /*The last iteration*/
15: t = S(n−1) mod Rn−1

16: [qn−1]rn−1 = t · [M ′n−1]rn−1 mod Rn−1

17: Z = t == 0 ? 0 : 1
18: S(n) = S(n−1)/Rn−1 + ([qn−1]rn−1 ·M)/Rn−1 + Z . Leave out [An]rn ·B = 0.
19: if S(n) > M then
20: S = S(n) −M

21: end if
22: return S

Theorem 1. Algorithm 3 is a new variant of quotient-decoupled load-balanced Montgomery
modular multiplication that computes S = A·B·R−1 mod M without increasing the iteration
count and incurring additional correction.

Proof. We could start from the iteration at line 12 of Algorithm 3 to seek the relation
between S(i) and S(i−1). First, the equation at line 12 is restored to its orginal form:
S(i) = (S(i−1) + [qi−1]ri−1 ·M)/Ri−1 + [Ai]ri

· B. Then, we unfold the iteration until
expressing S(i) with S(0):

S(i) ·Ri−1 = S(i−1) + [qi−1]ri−1 ·M +Ai ·B ·Ri−1

⇒ S(i) ·Ri−1 ·Ri−2 = Ai ·B ·Ri−1 ·Ri−2 + [qi−1]ri−1 ·Ri−2 ·M + S(i−1) ·Ri−2

= Ai ·B ·Ri−1 ·Ri−2 + [qi−1]ri−1 ·Ri−2 ·M +Ai−1 ·B ·Ri−2 + [qi−2]ri−2 ·M + S(i−2)

= (Ai ·Ri−1 ·Ri−2 +Ai−1 ·Ri−2) ·B + ([qi−1]ri−1 ·Ri−1 + [qi−2]ri−2) ·M + S(i−2)

...

⇒ S(i) ·
i∏

j=1

Rj−1 = B ·
i∑

k=1

([Ak]rk ·
k∏
j=1

Rj−1) +M ·
i∑

k=1

([qk−1]rk−1 ·
k−1∏
j=0

Rj) + S(0)

(5)

Note that S(0) is initialized as [A0]r0 ·B. The last iteration (line 15 to 18 of algorithm 3)
leaves out the accumulation with [An]rn ·B since [An]rn = 0. Considering the penultimate

286 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

iteration to assign i = n − 1, we have A =
∑n−1
k=0([Ak]rk

·
∏k
j=0 Rj). Defining q =∑n−1

k=0([qk]rk
·
∏k
j=0 Rj), we have:

S(n−1) ·
n−1∏
j=1

Rj−1 = B ·
n−1∑
k=0

([Ak]rk ·
k∏
j=0

Rj) +B ·
n−2∑
k=0

([qk]rk ·
k∏
j=0

Rj)

⇒ S(n) ·
n−1∏
j=0

Rj = [qn−1]rn−1 ·M ·Rn−1 + S(n−1) ·
n−1∏
j=1

Rj−1

= B ·
n−1∑
k=0

([Ak]rk ·
k∏
j=0

Rj) +M ·
n−1∑
k=0

([qk]rk ·
k∏
j=0

Rj) = A ·B + q ·M

⇒ S(n) ·R = A ·B + q ·M

(6)

Based on the Bézout’s identity R · (R−1 mod M) +M · (M ′ mod R) = 1 and equation 6,
we can derive the final result: S = A ·B ·R−1 mod M .

3.3 Case Study: Dual-precision MM for BLS12-381 Curve
We take the typical BLS12-381 curve parameter as an example to instantiate a specific LBFP
modular multiplier that supports dual precisions for both NTT and MSM. The optimization
strategies can also be adapted to other parameters such as the BLS12-377 curve. Here, we
choose the mixed radices as: R0 = R1 = 232, R2 = 248, R3 = 264, R4 = 280, R5 = 2128, and
we further have: Ra =

∏4
i=0 Ri = 2256, Rb =

∏5
i=0 Ri = 2384. Then, the constant factors

under different radices are derived and summarized in Table 7. To support double-precision
MM, we implement the 384-bit modular multiplier that is naturally compatible with
256-bit MM, albeit with some redundancy. Although a 128-bit modular multiplier based
on CIOS method can be iteratively utilized to achieve 256-bit and 384-bit MM without
redundancy, this approach introduces feedback loops in the data-path, failing to meet the
requirements for a fully-pipelined design. Collectively, we also integrate other orthogonal
ideas to further enhance the performance of this MM, which are listed as below.

• Customizing the constant multiplication. To unleash the power of the special
modulus, we implement the quotient determination [qi]ri = (S(i) mod Ri)·[M ′i]ri mod
Ri (at line 10/16 of Algorithm 3) with special multiplier (SM) comprised of shift
and addition operations, consequently lowering the area cost. We also represent the
moduli of NTT and MSM in non-adjacent form (NAF) to reduce the computational
intensity of qi ·M based on the constant multipliers (CM).

• Truncated LSB/MSB multiplication. The truncated LSB multiplication refers
to the multiplication for quotient calculation where only the lower part is taken as
the result. This approach helps reduce area overhead by leaving out the higher-part
multiplication [DL18], especially for dense constant factors. The truncated MSB
multiplication indicates the situation where the lower part of S + q ·M will be
zeros, allowing for opportunities to omit partial parts of multiplication. However,
directly disregarding the lower bits of M will introduce unpredictable calculation
errors [DL18][LP21]. Here, we adopt a different approach [Oru95] based on the
fact that the lower ri bits of [M ′i]ri ·M + 1 will be zeros. Thus, the computation
of (q ·M) >> ri can be replaced with S0 · ([M ′i]ri

·M >> ri) + S0 − 1 in that
q = S0 · [M ′i]ri

mod ri. In other words, the SM unit for quotient determination
and CM for q ·M are merged to a single truncated multiplier, which is especially
beneficial for the cases concerning dense constant factors.

• Karatsuba. For 128 × 128-bit and 80 × 80-bit sub-multiplications within the
128 × 384-bit and 80 × 384-bit multiplications, we further adopt the well-known

Xiangren Chen et al. 287

karatsuba technique to generate partial products and thus reduce the area overhead.
This is due to the fact that at certain threshold of bit-width Karatsuba starts to
outperform schoolbook algorithms in terms of area-efficiency.

The detailed dual-precision LBFP MM for BLS12-381 curve is shown in Figure 4, which
takes 9 clock cycles to obtain the final result. Here, the SM/CM units marked by the blue
color are implemented by two separated constant multipliers to be selected for 256-bit
and 384-bit modulus, respectively. According to the synthesis report under TSMC 28nm
process, the critical path consists of a 32 × 384-bit multiplier, SM0, CM0 and a 416-bit
adder within the part I and part II.

384

S
M

5

C
M

5

>>

128

𝑴𝟒′
𝑴

128
128

!=0
128

>>

128

+
384

384

1

-M

M
U

X

𝑪

SMi the i-th special multiplier

CMi the i-th constant multiplier

X multiplier

!=0 comparator

+ adder

>> shift

- substractor

MUX

multiplexer

pipeline

register

part VII

x
𝑨𝟎

𝑩 384

32

x
𝑨𝟏

𝑩 384

32

384

S
M

0

C
M

0

>>

32

𝑴𝟎′
𝑴

32
32

+
384

!=0
32

416

1

>>

32

+
416

384

x
𝑨𝟐

𝑩 384

48

384

S
M

1

C
M

1

>>

32

𝑴𝟏′
𝑴

32
32

+
384

!=0
32

432

1

>>

32

+
432

384

x
𝑨𝟑

𝑩 384

64

384

S
M

2

C
M

2

>>

48

𝑴𝟐′
𝑴

48
48

+
384

!=0
48

448

1

>>

48

+
448

384
384

S
M

3

C
M

3

>>

64

𝑴𝟑′
𝑴

64
64

+
256

!=0
64

464

1

>>

64

+
464

384

Karatsuba mult.
𝑨𝟒

𝑩 384

80

part I
part II

part III

part IV

part V

Karatsuba mult.

384

S
M

4

C
M

4

>>

80

𝑴𝟑′
𝑴

80
80

+
384

!=0
80

512

1

>>

80

+
512

384

part VI

𝑨𝟓

𝑩 384

128

Figure 4: An instantiation of dual-precision LBFP MM for BLS12-381 curve.

4 Unified Accelerator for NTT & MSM
Taking BLS12-381 curve as an example, we will introduce the high-level architecture and
configuration for NTT and MSM first. Then, the optimization strategies, timing scheduling
mechanism and reasons behind the choice of design parameters will be covered later for
NTT and MSM modes, respectively.

bank group 4
#5×16×#128×128bit

bank group 2
#4×16×#128×128bit

bank group 3

bank group 0
#4×16×#128×128bit

bank group 1

D
R

A
M

O
ff-ch

ip
 M

em
o

ry

PE

00

TF seed bank

TF Engine

N
T

T
/IN

T
T

 co
n
tro

ller

PE Config. Regs

M
S

M
 co

n
tro

ller

T
O

P
 c

o
n

tr
o

lle
r

PE

01

PE

02

PE

03

PE

10

PE

11

PE

12

PE

13

PE

20

PE

21

PE

22

PE

23

PE

30
PE

31

PE

32

PE

33

In
terface &

 M
em

o
ry

 co
n
tro

ller

Memory Config. Regs

#4 × 4

fully-pipelined

configurable

PE array

H
O

S
T

（C
P

U

）

#4 × 4

digit-serial MM

cases: #16 BFUs /
 #1 PADD

mode I

mode II

mode III

Figure 5: The unified architecture for NTT/INTT and MSM.

4.1 High-level Architecture Overview
Figure 5 presents the unified architecture for both NTT/INTT and MSM, which mainly
consists of five bank groups, a twiddle factor (TF) engine, a configurable processing element
(PE) array, three hierarchical controllers and two ping-pong off-chip memories. At the

288 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

initial phase, data points to be processed by NTT and MSM are loaded from the host
CPU to the off-chip memory. Particularly, the DRAM layout for NTT is customized as the
tiled data blocks shown in Appendix B, which is conducive to minimizing the row buffer
miss that arises from large address stride when accessing rows and columns of large-scale
matrix [AFH16]. Besides, the classic four-step NTT requires extra cycle consumption
and transpose unit, which takes up about 14% of the area per compute cluster [SFK+21].
Fortunately, the matrix transposition can be eliminated in our design, since the customized
layout already supports both row-wise and column-wise access efficiently. Then, the mode
signals and configuration context are sent from the host to prepare for the next execution.

Memory organization. In general, each memory group is divided into 64/80 banks,
with each bank equipped with 128×128-bit memory cells. In this way, two, six or nine
memory cells can be assembled to accommodate a 256-bit scalar, a 768-bit curve point
with projective coordinate (Z = 1) or a 1152-bit curve point (Z 6= 1). Thus, these bank
groups under mode I - III can be shared to support both NTT and MSM, ultimately
improving the resource utilization. Additionally, partial banks within bank group 4 are
dual-port SRAMs used as buckets and result buffer for MSM, such that two access requests
during the bucket accumulation step can be met without pipeline stalls. In summary, the
memory partition strategies for NTT and MSM modes are depicted in Figure 6, which
will be further referred and elaborated in the following sections.

256-bits

#1
2

8
 ×

 4
 = 0

.5
K

(cu
rren

t b
atch

)

#128 384-bit curve point + 256-bit scalar

768-bits

#1
2

8
 ×

 8
 = 1

K

BankGroup0~1 (current batch)

BankGroup2~3 (next batch)

#1
2

8
 ×

 4
 = 0

.5
K

(n
ex

t b
atch

)

Bucket
(dual-port)

256-bits 768-bits

Result Buffer
(dual-port)

Point Mem.
(single-port)

Scalar Mem.
(single-port)

BankGroup4

Idle/ID
(single-port)

256-bits

#1
2

8
 ×

 8
 = 1

K

BankGroup0~1 (current batch)

BankGroup2~3 (next batch)

Shared TFs for sub-(I)NTT

256-bits

TFs for HP

Scalar Mem.
(single-port)

BankGroup4

TFs for sub-(I)NTT
(single-port)

S
calars fo

r su
b

-(I)N
T

T

ro
w

/co
lu

m
n
 4

i

S
calars fo

r su
b

-(I)N
T

T

ro
w

/co
lu

m
n
 4

i+
1

S
calars fo

r su
b

-(I)N
T

T

ro
w

/co
lu

m
n

 4
i+

2

S
calars fo

r su
b

-(I)N
T

T

ro
w

/co
lu

m
n
 4

i+
3

#2
5

6
#2

5
6

 ×
 4

 = 1
K

T
F

s fo
r H

P

ro
w

/co
lu

m
n

 4
i

T
F

s fo
r H

P

ro
w

/co
lu

m
n
 4

i+
1

T
F

s fo
r H

P

ro
w

/co
lu

m
n

 4
i+

2

T
F

s fo
r H

P

ro
w

/co
lu

m
n
 4

i+
3

ping-pong
access

merge

(a) NTT Mode: Memory partition for 220 NTT (can be extended to 222, 224)

(b) MSM Mode: Memory partition for 2.5K on-chip MSM

Figure 6: Proposed memory partition strategies for NTT and MSM.

PE array arrangement. To support all three steps of MSM, the point adder unit
adopts the complete point addition formula [BL95, RCB16] instead of the mixed addition
one [RDQY24]. Because the latter cannot be performed between two curve points both

Xiangren Chen et al. 289

with projective coordinates, which are likely to occur during bucket/group aggregation
phases. It takes 12 384-bit modular multipliers and approximately 20 modular adders
to implement the complete point addition formula. We also adopt the Gentleman Sande
(GS) butterfly unit (BFU) for both NTT and INTT, which occupies one 256-bit modular
multiplier, adder, subtractor and half unit. As a result, the 4 × 4 PE array is devised
to support the configuration for 16 BFUs and 1 point adder unit. Each PE is composed
of one modular multiplier, adder, subtractor and several multiplexers. Among them, 12
PEs are built with 384-bit data channel while the remaining 4 PEs contain the 256-bit
data channel. Since the Montgomery radix is chosen as R ≥ 2M , the modular adder can
be replaced with reduction-free adder to further save area cost like the lazy reduction
technique [CDF+11].

4.2 Optimization Strategies for NTT Mode
Limitations of existing designs. Prior works (e.q., [ZWZ+21]) adopt the SDF pipelined
sub-NTT architecture to take in one data point per cycle. This streamlining architecture
aims to mitigate the requirement of off-chip memory bandwidth and avoid the multi-
bank access conflicts. However, the typical SDF pipelined architecture only achieves
50% hardware utilization rate, and the segmented FIFOs are hard to be reused by MSM.
[HMR23] points out that the SDF NTT architecture takes up approximately 2n+ logn · l
cycles to process n data points when the butterfly operation consumes l cycles. If an
equal number (i.e., logn) of BFU is utilized, the multi-bank NTT architecture consumes
n/(2logn) ·logn+l = n/2+l clock cycles only. Since the parameters n and l are particularly
large within zk-SNARK, the cycle count for the SDF type far exceeds that of multi-bank
based architecture. Another similar pipelined NTT architecture is based on the Multi-Path
Delay Commutator (MDC) technique, which achieves 100% hardware utilization rate
but still consumes n+ logn · l clock cycles. Hence, this work pivots towards the scalable
multi-bank NTT architecture, which also facilitates the hiding of the off-chip memory
access latency by adjusting the number of parallel BFUs.

𝝎𝟖
𝟎

𝝎𝟖
𝟏

𝝎𝟖
𝟐

𝝎𝟖
𝟑

𝝎𝟖
𝟎

𝝎𝟖
𝟐

𝝎𝟖
𝟎

𝝎𝟖
𝟐

𝝎𝟖
𝟎

𝝎𝟖
𝟎

𝝎𝟖
𝟎

𝝎𝟖
𝟎

𝑎7

𝑎6

𝑎5

𝑎4

𝑎2

𝑎3

𝑎0

𝑎1

𝐴7

𝐴3

𝐴5

𝐴1

𝐴2

𝐴6

𝐴0

𝐴4
𝝎𝟖
𝟎

𝝎𝟖
−𝟐

𝝎𝟖
−𝟑

𝝎𝟖
−𝟏

𝝎𝟖
𝟎

𝝎𝟖
−𝟐

𝝎𝟖
𝟎

𝝎𝟖
−𝟐 𝝎𝟖

𝟎

𝝎𝟖
𝟎

𝝎𝟖
𝟎

𝝎𝟖
𝟎

𝐴7

𝐴3

𝐴5

𝐴1

𝐴2

𝐴6

𝐴0

𝐴4

𝑎7

𝑎6

𝑎5

𝑎4

𝑎2

𝑎3

𝑎0

𝑎1
+

-

M
U

X
M

U
X x

+

-

M
U

X
M

U
X

H

H

𝝎

𝒖𝒊

𝒗𝒊

𝒖𝒐

𝒗𝒐

𝒎𝒐𝒅𝒆

+

- x M
U

X

H

M
U

X

H

𝝎
𝒎𝒐𝒅𝒆

𝒖𝒐

𝒗𝒐

𝒖𝒊

𝒗𝒊

DIF GS BFU + DIT CT BFU

DIF GS BFU (This work)

(a) 8-point dataflow of DIF-NR NTT (b) 8-point dataflow of DIF-RN INTT (c) optimized butterfly unit for NTT/INTT

N: Natural order R R: Reversed order N

Figure 7: An example of rearranged dataflow for 8-point NTT/INTT.

Algorithmic optimizations. The complete four-step NTT/INTT, as shown in
Algorithm 4, is optimized from two-fold aspects. (1) Avoiding bit-reversed issue and
simplifying the unified BFU. Although conducting bit-reversing for addresses is essentially
a low-cost rewiring operation, varying vector lengths involve different rewiring channels,
thus amplifying the overhead of multiplexers. Hence, it is advisable to remove the bit-
reversed overhead through algorithmic improvement. By studying literature works, we
find that most prior works adopt the DIF-NR INTT algorithm, whereas the DIF-RN
INTT is fewly discussed in detail. By adopting similar techniques to [CYY+22], this work
proposes the paired DIF-RN INTT and DIF-NR NTT based on GS BFU only, which

290 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

simplifies the unified BFU (Figure 7 (c)) by reducing one modular adder, subtractor and
two multiplexers. (2) Based on the property: ω−in = ωn−in = ω

n/2
n · ωn/2−i

n = −ωn/2−i
n , we

can reuse the TFs of sub-NTT for sub-INTT. As shown in Algorithm 5 & 6, we ultimately
need to store n/2− 1 TFs for performing both n-point sub-NTT and sub-INTT, whose
8-point data flows are depicted in Figure 7 (a) & (b), respectively.

Proposed sub-NTT kernel. As shown in Figure 8, each sub-NTT kernel serves
one row/column of matrix, consisting of address generators, ping-pong banks, shuffles,
and 4 parallel BFUs. Four sub-NTT kernels share the same TF engine and TF memory,
independently conducting four row/column-wise (I)NTTs. As explained in Figure 6 (a),
every bank group0-3 is further decomposed into #4×8 independent banks to match the
parallel butterfly computations in a ping-pong access mechanism. Inspired by the work
[Kun85], we devise an extremely lightweight shuffle to achieve conflict-free memory access
for each stage of parallel butterfly computations. Figure 8 depicts the exemplary shuffle
for the 0-th stage of 16-point NTT/INTT with 4 BFUs. The two-layer shuffle0 manages
the data vector fetched from the bank group0, whereas the two-layer shuffle1 reorders the
output results from BFUs and feeds them into the bank group1. Readers can verify that
the shuffle structure utilized at the i-th stage (i > 0) remains identical to that of the 0-th
stage. Unlike the heavy permutation networks in [CYY+22, XHY+20], this shuffle consists
of only two types of topology at each layer, maintaining constant two fan-ins for each
multiplexer regardless of parallel degree. It can also be extended to support a variable
number of BFUs, resulting in a substantial reduction in the interconnection overhead.

C
T

R
L

Shuffle0

ping-pong

banks

Shuffle1

BFU

1 ∼ 4

…

…

0

12

1

13

2

14

3

15

4

8

5

9

6

10

7

11

0

1

2

3

8

9

10

11

0

1

2

3

8

9

10

11

0

8

1

9

2

10

3

11

0

8

1

9

2

10

3

11

0

8

1

9

2

10

3

11

12

13

14

15

4

5

6

7

4

5

6

7

12

13

14

15

4

12

5

13

6

14

7

15

4

12

5

13

6

14

7

15

6

14

7

15

4

12

5

13

0

6

8

14

1

7

9

15

2

4

10

12

3

5

11

13

round 0

round 1
shuffle0 shuffle1

shuffle0 shuffle1

b
an

k
3

b
an

k
0

b
an

k
1

b
an

k
2

b
an

k
7

b
an

k
4

b
an

k
5

b
an

k
6

0

12

1

13

2

14

3

15

4

8

5

9

6

10

7

11

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

2

4

6

1

3

5

7

0

2

4

6

1

3

5

7

12

13

14

15

8

9

10

11

8

9

10

11

12

13

14

15

8

9

10

11

12

13

14

15

8

10

12

14

9

11

13

15

9

11

13

15

8

10

12

14

0

9

2

11

4

13

6

15

8

1

10

3

12

5

14

7

round 0

round 1
shuffle0 shuffle1

shuffle0 shuffle1

NTT STAGE 0 INTT STAGE 0

#2 × #8 × 128 × 256bits

sub-(I)NTT

banks 4BFUs

sub-(I)NTT

banks 4BFUs

sub-(I)NTT

banks 4BFUs

sub-(I)NTT

banks 4BFUs

NTT controller

Row/Column

4i+3

TFs

for HP

shared TFs for sub-(I)NTT

Output: #4 × 256bits

Row/Column

4i+2

TFs

for HP

Row/Column

4i+1

TFs

for HP

Row/Column

4i

TFs

for HP
21 3 4

ad
d
r m

ap
ad

d
r g

en

Figure 8: The sub-NTT kernel with exemplary shuffle for 16-point NTT/INTT & 4 BFUs.
Versatile scheduling based on ping-pong banks. Subsequent to and inspired

by the versatile strategy in [AFH16], we adopt the ping-pong architecture to overlap
the off-chip memory access with the on-chip NTT computation. Specifically, when the
on-chip computing units process the current batch of data, the next batch of data can be
concurrently prefetched from the off-chip memory to the on-chip unused memory banks.
Figure 9 visualizes the tasks of each component when processing four batches of data
points for the four-step NTT. Based on the lightweight shuffle mentioned before, we could
adjust the parallel degree (i.e., the number of BFUs) to match the on-chip computation
with the off-chip memory access latency. Evidently, the benefit of timing schedule based
on ping-pong banks is embodied by the following aspects: (1) When the on-chip NTT
cluster processes the batch of data d0, DRAM0 concurrently loads the batch of data d1
into bank group2; (2) When the on-chip NTT cluster finishes processing the batch of
data d0, it loads the results from bank group1 into DRAM1. At the same time, DRAM0

Xiangren Chen et al. 291

loads the next batch of data d2 into the bank group0; (3) When data transfer and NTT
computation are under progress, the hardware engine for TFs will work in parallel and
should be completed before starting the Hadamard product (HP). The aforementioned
timing schedule entirely hides the off-chip memory access latency, considerably reducing
the overall execution time. In this way, the cycle count for processing N ×N -point four
step NTT can be approximately calculated as:

N/4 · (N/8 · log2N +N/4)︸ ︷︷ ︸
processing N-row NTT and HP

+ N/4 ·N/8 · (log2N)︸ ︷︷ ︸
processing N-column NTT

+ O(N)︸ ︷︷ ︸
setup & end

(7)

DRAM0

DRAM1

Bank

Group0

Bank

Group1

NTT

Cluster

TF

Gen

Bank

Group2

Bank

Group3

LD batched d0

WR batched d0

NTT d0 HP d0

R

W

WR batched d1

NTT d1 HP d1

R

W

LD batched d1

ST batched d0

RD batched d0

TF for d1

LD batched d2

WR batched d2

NTT d2 HP d2

R

W

ping-pong access

ST batched d1

TF for d2

WR batched d2

NTT d2 HP d2

R

W

TF for d3

ST batched d2

RD batched d1

LD batched d3

ST batched d3

RD batched d3

LD: load
ST: store

WR/W: Write
RD/R: read

HP: hadmard
product

RD batched d2

…

…

…

…

time

o
p

s

TF for d0

≈100%
resource
utilization

batched-processing period

bottlenecked by max{NTT+HP, DRAM access}

Figure 9: NTT timing schedule for off-chip memory access and on-chip computation.

TF engine. An indispensable operation of four-step NTT is to conduct the HP
between each row/column-wise vector and TFs ωijN2 (i = 0, 1, ..., N − 1, j = 0, 1, ..., N − 1).
Storing all (N − 1)2 TFs into on-chip memory would incur tremendous area budget, which
motivates us to devise the on-the-fly computation engine as shown in Figure 10. Owing
to the property: ω−iN2 = ω

N2/2
N2 · ωN

2/2−i
N2 = −ωN

2/2−i
N2 , we just need to store N seeds ωiN2

(i = 0, 1, ..., N − 1) to generate all the TFs required by the HPs of both NTT and INTT.
Four parallel generation engines based on the common seed memory serve the HPs of
four rows/columns. Particularly, each engine is composed of 4 digit-serial Montgomery
MMs and 4 data banks, which aims to guarantee all necessary TFs are generated before
the start of HPs. As a notable optimization, the digit-serial MM is also designed with
an instantiation of Algorithm 3, i.e., quotient-decoupled radix-32 Montgomery algorithm,
which reduces the critical path by two multiplications compared to the classic method.

Shift Reg

x

M
U

X

R
eg

TF

bank0

x

M
U

X

R
eg

TF

bank1

x

M
U

X

R
eg

TF bank

n-1

…… …

…

seed

bank 0

seed

bank 1

seed

bank n-1

…

TF engine for

row0 ~ row n-1
𝝎𝑵

𝟎 , 𝝎𝑵
𝒏 , …, 𝝎𝑵

𝒏×𝒎

𝝎𝑵
𝟏 , 𝝎𝑵

𝒏+𝟏, …, 𝝎𝑵
𝒏×𝒎+𝟏

𝝎𝑵
𝒏−𝟏, 𝝎𝑵

𝟐𝒏−𝟏, …, 𝝎𝑵
𝑵−𝟏

(b) Optimized radix-32 Montgomery modular multiplier

32

x

× (−𝟏)

× 𝑴

+

>>32

MUX

𝑨𝒊 𝑩
𝟎

32

!=0

256
288

Reg

1

256

>>32

+

critical p
ath

 =
 1

×
M

U
L

T
s +

 2
×

A
D

D
s

this work

32

Shift Reg Reg

x

+

Reg

x

x

+

>>32

MUX

𝟎

𝑴𝟎
′

𝑴

32

32

288
288

critical p
ath

 =
 3

×
M

U
L

T
s +

 2
×

A
D

D
s

𝑨𝒊 𝑩
Shift Reg Reg

(a) Generation engine for twiddle factors (used in the 2rd step)

digit-serial

MM

Figure 10: Hardware engine for HP’s TFs via the optimized MM.

292 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

4.3 Optimization Strategies for MSM Mode
As an operation to aggregate the polynomial with curve point vector, MSM typically makes
up a large majority of the workload within zk-SNARK. Different from the large-scale NTT
operation that frequently interacts with the off-chip memory, the performance of MSM is
dominantly bottlenecked by the massive on-chip point additions. To devise a fully-pipelined
hardware architecture for Pippenger algorithm is particularly central to the throughput
gain. One of the main concerns for fully-pipelined MSM design is the complicated controller
to avoid colliding points and improve pipeline utilization. In the following, we delve into
the critical details of the specific architecture, scheduling mechanism, and united point
adder design.

Proposed MSM architecture. Considering that the number of curve points assigned
to each bucket is related to the specific value of scalars, the workloads among buckets
will be unpredictable and possibly imbalanced. Figure 12 depicts the fully-pipelined
MSM architecture based on the shared point adder unit, which utilizes a sophisticated
scheduler to balance the workload without access conflicts. Compared to the MSM kernel
in prior works, the presented architecture fully reuses the memory banks from NTT by
manipulating the memory partition. At this time, two bank groups 0-1 in Figure 5 are
arranged as #2K×256-bit scalar memory for storing scalar vector and #2K×768-bit point
memory for storing curve point vectors fetched from off-chip memory, respectively. Another
two bank groups 2-3 are configured as the same manner, which are used to buffer the next
batch of scalar/point vectors fetched in parallel with the current MSM computation, thus
almost eliminating the DRAM access latency. Bank group 4 is generally split into three
parts, functioning as two batches of #0.5K×768-bit point memory, #0.5K×256-bit scalar
memory, buckets and result buffers, respectively. Each memory region is paired with a
status reg to indicate the full or empty state. Figure 6 (b) portrays the proposed memory
partition strategy for MSM in detail.

PM

status

A_EN

B_EN

RB

status

bubble

bubble
P_ID R_ID

padd_in_sel0

bucket_in_sel

padd_in_sel1

bucket 1-m

status

RB_EN

Scalar Mem. Point Mem.

fully-pipelined

Point

adder

Result Buffer

1 2

#𝑵 × 𝒄 bits #𝑵 × 𝟕𝟔𝟖 bits

3 m

dual-port SRAM

…

P

(R, R_ID)

P_ID

(A, P_ID) (B, R_ID)

(R, R_ID)

P
_

E
N

S
_

E
N

RB_update

PM_update

Bucket_update

MSM

Controller

A: bucket hitted by P_ID

B: bucket hitted by R_ID

m-1

𝒄bits

𝒄 + 𝟏𝟏𝟓𝟐bits

𝟕𝟔𝟖bits

M
U

X

MUX

MUX MUX MUX MUX MUX

Figure 11: The proposed fully-pipelined MSM architecture.

Compact point adder design. Previous works explore many variants of point
addition formula [BL, HWCD08] to reduce the number of required modular multipliers, such

Xiangren Chen et al. 293

as the mixed addition formula under scaled twisted Edwards curve [RDQY24] consuming
7 modular multipliers and 6 modular adders merely. However, these refined formulas pose
certain restrictions to the format of input curve points, which make them inappropriate to
the bucket/group aggregation stages. It also employs the extended projective coordinates
that consume more memory footprint than the complete point addition formula, which
would be a good trade-off on the memory-rich FPGA platform only. Since our design
mainly targets at the ASIC implementation, the saved area for the modular multipliers
within a single PADD unit would be offset by the largely increased on/off-chip memory
overhead for every point. Therefore, we opt for implementing the complete point addition
formula [RCB16, BL95] by successfully reusing 12 BFUs from NTT. Figure 12 (a) depicts
the spatial and temporal mapping strategy for the point adder with 22 pipeline stages,
wherein the modular multiplier (MM) occupies 9 cycles, and modular adder/subtractor
(MA/MS) takes up 1 cycle. As can be seen, each PE (BFU) is configured as at most
one type of function per cycle, and can not be configured as the same function twice
during the 22 pipeline cycles. Using the multiplexers shown in Figure 12 (b), the proposed
configurable PE unit can accomplish both BFU and PADD functions without spatial and
temporal conflicts. For brevity, the concrete fully-pipelined data-flow and interconnection
of the point adder is depicted in Appendix A. Note that the transformation from affine
coordinates to projective coordinates in complete formula [RCB16] is cost-free by directly
setting Z = 1, whereas the twisted formula [HWCD08] requires heavy precomputation to
obtain the extended coordinates.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
BFU0
BFU1
BFU2
BFU3
BFU4
BFU5
BFU6
BFU7
BFU8
BFU9

BFU10
BFU11

config as MM config as MA config as MS idle state

(a) spatial and temporal mapping from #12 BFUs to #1 PADD

x H

H

+

-

0

1

1

0

1

0

0

1

1

0

10

1

0

0

1

𝝎 𝒎𝒔𝒎_𝒎𝒖𝒍𝒕𝟏

𝒎𝒔𝒎_𝒂𝒅𝒅𝟎

𝒏𝒕𝒕_𝒊𝒏𝟎

𝒎𝒔𝒎_𝒔𝒖𝒃𝟎

𝒎𝒔𝒎_𝒂𝒅𝒅𝟏

𝒏𝒕𝒕_𝒊𝒏𝟏
𝒎𝒔𝒎_𝒔𝒖𝒃𝟏

𝒎𝒔𝒎_𝒎𝒖𝒍𝒕𝟎

𝒎𝒔𝒎_𝒔𝒖𝒃_𝒐

𝒎𝒔𝒎_𝒂𝒅𝒅_𝒐

𝒎𝒔𝒎_𝒎𝒖𝒍𝒕_𝒐

𝒏𝒕𝒕_𝒐𝟎

𝒏𝒕𝒕_𝒐𝟏

𝒎𝒐𝒅𝒆𝟎

𝒎𝒐𝒅𝒆𝟎

𝒎𝒐𝒅𝒆𝟎

𝒎𝒐𝒅𝒆𝟎

𝒎𝒐𝒅𝒆𝟎

𝒎𝒐𝒅𝒆𝟎

𝒎𝒐𝒅𝒆𝟏

𝒎𝒐𝒅𝒆𝟏

(b) configurable PE unit

𝒎𝒐𝒅𝒆𝟎 = 𝟏: 𝑴𝑺𝑴
𝒎𝒐𝒅𝒆𝟎 = 𝟎 & 𝒎𝒐𝒅𝒆𝟏 = 𝟏: 𝑰𝑵𝑻𝑻
𝒎𝒐𝒅𝒆𝟎 = 𝟎 & 𝒎𝒐𝒅𝒆𝟏 = 𝟎: 𝑵𝑻𝑻

Figure 12: The mapping from 12 BFUs to 1 PADD based on the configurable PE unit.

Load-aware arbitration mechanism. Compared to the computations for bucket/group
aggregation, the bucket accumulation stage is more time-consuming and complex, which is
the optimization focus of this work. In contrast to the MSM kernel within PipeZK, the
proposed one requires no input FIFOs for the PADD unit by employing a different workload
dispatching mechanism. We also adopt the offset binary coding technique to halve the

294 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

size of buckets [CA07, LFG23]. Since the input sources for the point adder possibly come
from the point memory (PM), buckets and result buffer (RB), it is important to devise an
elegant arbiter to circumvent the access conflict and improve the resource utilization. First,
the batched scalar and point vector are loaded from DRAM to the on-chip memory. Then,
at each cycle, the MSM controller attempts to dispatch one curve point Pi along with
one slice of scalar P_ID = si,j to the bucket with index equal to P_ID. Specifically, the
determination of the input source for PADD unit is further divided into ten fine-grained
cases shown in Table 1. In general, the input source for PADD unit relies on the status of
PM, RB and buckets. For example, case 0-a/b occurs at the initial phase when the first
result of pipelined PADD unit is yet streamed out. The PADD input is determined by the
status of bucket A. Case 1 indicates that if the index of new point (P_ID) is identical to
that of PADD result (R_ID) at current cycle, then they are paired together as the input
for PADD unit. Otherwise, we proceed to case 2a-d for further arbitration. In this way,
once the operands are available, they are immediately sent to the PADD unit without
conflict and pipeline stall, thereby minimizing the occurrence of bubble. The next batched
data will be handled only after the current slice vector is scanned and processed based on
the above scheduling mechanism. For the sake of clarity, Figure 17 in Appendix A presents
an exemplary timing diagram for the one-slice bucket accumulation in detail, which is
further divided into three fine-grained phases.

Table 1: The control strategy to manage the input source of PADD unit.

Status
Point
Mem

Result
Buffer

P_ID ==
R_ID ?

Bucket
A

Bucket
B

PADD
Inputs

A_EN B_EN

case 0a Not
Empty

Empty −
Empty − bubble 1 0

case 0b Full − (P,A) 0 0
case 1

Not
Empty

Not
Empty

Yes − − (P,R) 0 0
case 2a

No

Full Empty (P,A) 0 1
case 2b Empty Full (R,B) 1 0
case 2c Empty Empty bubble 1 1
case 2d Full Full (P,A) 0 0
case 3a

Empty
Not

Empty
−

− Empty bubble 0 1
case 3b − Full (R,B) 0 0
case 4 Empty Empty − − − bubble 0 0

NOTES: R: results of PADD. P: curve points from PM. R_ID: index of result R. P_ID: index of P.

Table 2: The parameter configuration for DDR4.

DDR4 type Capacity Row Column Bank Bank group Rank
MT40A256M16GE-062E 4Gb, ×16 15 10 2 1 1

Memory address map Data width Freq. Burst length tRCD tRP

Row-Column-Bank 64 Bytes 3.2 GHz 8 13.75 ns 13.75 ns

5 Implementation Results and Comparisons
In this section, we conduct the case study on NTT and MSM hardware implementation
that supports processing data points taken from the BLS12-381 curve. The entire hardware
architecture is coded and simulated with Verilog HDL, plus an additional validation of
functionality using a cycle-accurate Python model. Under TSMC 28nm HPC process, we
synthesize the whole design based on Synopsys Design Compiler P-2019.03. A fast and
accurate simulator of DDR named Ramulator [LTB+23] is applied to evaluate the off-chip

Xiangren Chen et al. 295

memory access, which is also adopted in many relevant works [ZWZ+21] under the similar
parameter configuration as shown in Table 2. We also utilize the memory interface IP on
the FPGA to verify the simulation data from Ramulator, whose vivado project is available
on the given website. The on-chip hardware architecture reserves data/address ports and
corresponding control signals for the off-chip memory. Below, we make both theoretical
analysis and practical implementation evaluations on the LBFP modular multiplier 1 and
overall unified architecture.

5.1 Evaluations on LBFP Modular Multiplier
Area cost of 256/384-bit MM. To quantify the impact of load-balancing (LB) technique
on the area savings, we synthesize the 256/384-bit MMs under different strategies shown
in Figure 13. Aligning with the theoretical analysis, the LB technique helps reduce the
overall area cost by 1.1× ∼ 1.8× when they are staffed with the same througphut.

0.29 0.23 0.23

0.64
0.51 0.5

0.11

0.035 0.016

0.37

0.1
0.037

0

0.2

0.4

0.6

0.8

1

1.2

radix-16 radix-32 Ours (LB tech.) radix-16 radix-32 Ours (LB tech.)

A
re

a
(m

m
^2

)

Combinational Area Non-combinational Area

(Synthesized under 1GHz)

256-bit fully-pipelined MM 384-bit fully-pipelined MM

1.6×

1.1×

1.8×

1.1×

Figure 13: Evaluations on the LB technique for Montgomery MM.
Table 3: The theoretical analysis about different Montgomery reduction methods.

schemes
critical
path

#
Mult.

quotient
decoupled

load
balanced

CM.
opt.

iteration
count

ex.
cor.

[KKAK96] 3 mult + 2 add 3 N N N n N
[Oru95] 1 mult + 2 add 3 Y N N n + d Y

[MLPJ13] 1 mult + 2 add 3 Y N N n + 3 Y
[SNF+19] 1 mult + 2 add 3 Y N N n + 2 Y
[BRM19] 1 mult + 2 add 3 Y N N n + 3 Y
[ZCP23] 1 mult + 2 add 2 Y N Y n + 8 N
[HMR23] 2 mult + 2 add 2 N N Y n N

This work 1 mult + 2 add 2 Y Y Y n N

NOTES: CM. opt. - constant multiplication optimization. ex. cor. - extra correction.

Comparisons about the algorithmic complexity. Table 3 lists some typical and
recently-emerged works that utilize different variants of high-radix Montgomery algorithms,
accompanied with analysis and comparisons from considerate aspects. Herein, the critical
path indicates the longest combinatorial logic path in a single iteration. The classic
Montgomery algorithm [KKAK96] requires the lowest iteration count and needs no extra
correction to adjust the result back to the modulus range. Nonetheless, it suffers from
the largest critical path and highest number of multiplication. In contrast, the classic
quotient-delayed Montgomery algorithm [Oru95] exhibits the shortest critical path, at the
expense of increased iteration count and extra correction. The works [MLPJ13] [SNF+19]
[BRM19] adopt the algorithm from [Oru95] by specifying the delay degree (e.g., d = 1 or

1Our implementation code is available on https://github.com/xiang-rc/UniNM-Acc.

https://github.com/xiang-rc/UniNM-Acc

296 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

2). These works respectively devise the scalable systolic array and digit-serial architecture
to implement the Montgomery modular multipliers, which also share similar drawbacks
with the original algorithm [Oru95]. The recent work [ZCP23] introduces another approach
that decouples the quotient computation without extra correction but still encounters the
increment of iteration count and doubles the bitwidth of quotient. [HMR23] saves one
multiplication cost by utilizing the property of NTT friendly modulus while having similar
shortcomings with [KKAK96]. In a nutshell, the LBFP MM integrates quotient-delayed,
mixed-radix representation and constant multiplication optimization to significantly reduce
the critical path and multiplication cost, still featuring the advantage of not increasing
iteration count and needing extra correction.

MM Implementation and comparison. We conduct thorough comparisons with
relevant designs to evaluate the profit of our optimizations, especially focusing on the
plentiful 256-bit ASIC implementations. Table 8 lists the implementation results of modular
multipliers based on different design strategies and algorithm types. Although the digit-
serial and partially-pipelined strategies fluently lead to low-cost MM implementations,
they are hard to meet the incredibly high-throughput requirement of NTT and MSM
processors. To make an apple-to-apple comparison, we also synthesize our MM with
TSMC 65nm process. Baseline 1.x denotes the modular multiplier design based on the
prevalent high-radix Montgomery algorithm [KKAK96], while baseline 2.x extends this by
applying constant multiplier to make the quotient determination cost-free. As expected by
the theoretical analysis, whether in fully pipelined or digit-serial strategy, the area and
latency of baseline 2.x series outperform those of baseline 1.x. As the most relevant and
up-to-date fully-pipelined counterpart, [SNF+19] borrows the classical quotient-delayed
algorithm but fails to figure out the CM. optimization and load balancing techniques.
For a fairer comparison, we synthesize the design of [SNF+19] under the same process
node, whose latency and area cost are approximately 1.8× and 1.3× higher than those of
our work. [LWD+21] develops the small-radix digit-serial Montgomery multiplier, which
achieves a high frequency at the expense of large number of cycles. As a result, the area
efficiency measured by ATP is much lower than this work. [GL19][IIA19] also employ
pipeline techniques to the full-word Montgomery multiplication, achieving low latency at
the price of heavy area overhead. [MAQSS16] devises efficient partially-pipelined MMs
for special NIST modulus by applying customized modular reduction method. [KLC16]
introduces a scalable radix-4 Montgomery multiplier based on systolic array, which is
capable of handling variable bit-width precision. However, this design incurs a considerable
cycle count, making it better suited for resource-constrained IoT application.

5.2 Evaluations on the Overall Architecture
Area breakdown. Table 4 reports the area breakdown across main building components
for the unifield accelerator. Thanks to the configurable and unifield design methodology,
the total on-chip area of the accelerator only occupies 11.31 mm2 area, which is about
4.3× lower than the sumed area of NTT and MSM kernels within PipeZK. As can be
seen, the compact and configurable PE array supporting both NTT and MSM operations
consumes 8.45 mm2 area, accounting for around 74.7% of total area cost.

Table 4: The area breakdown across main sub-modules

Component Area
(mm2)

Percentage
(%) Component Area

(mm2)
Percentage

(%)

PE Array 8.45 74.7 BankGroup4 0.52 4.6
b 4×PEs (256-bit) 1.1 13 TF Engine 0.36 3.2
b 12×PEs (384-bit) 7.35 87 b 16×digit-serial MMs 0.25 69.4
BankGroup0-3 1.66 14.7 b seed bank 0.11 30.6
Other Parts 0.32 2.8 Total Area 11.31 −

Xiangren Chen et al. 297

T
ab

le
8:

T
he

co
m
pa

ris
on

ab
ou

t
25
6-
bi
t
M
on

tg
om

er
y
m
ul
tip

lie
rs

un
de

r
A
SI
C

sy
nt
he

sis
sc

he
m

es
pl

at
fo

rm
s

de
si

gn
st

ra
te

gy
al

go
ri

th
m

ty
pe

Fr
eq

ue
nc

y
(H

z)
C

yc
le

L
at

en
cy

A
re

a
A

T
P

c

hi
gh

-r
ad

ix
M
on

tg
om

er
y
m
od

ul
ar

m
ul
tip

lic
at
io
n
fr
om

[K
K
A
K
96

]
B
as
el
in
e
1.
0

T
SM

C
28
nm

fu
lly

pi
pe

lin
ed

ra
di
x-
16

M
on

t.
1G

16
16
ns

0.
4m

m
2
/7
93
.3
K
G
E
s

6.
4/
12
.7

B
as
el
in
e
1.
1

di
gi
t
se
ria

l
ra
di
x-
16

M
on

t.
1G

16
16
ns

0.
02
4m

m
2
/4
6.
8K

G
E
s

0.
4/
0.
75

B
as
el
in
e
1.
2

fu
lly

pi
pe

lin
ed

ra
di
x-
32

M
on

t.
1G

8
8n

s
0.
29
m
m

2
/5
81
.5
K
G
E
s

2.
3/
4.
7

B
as
el
in
e
1.
3

di
gi
t
se
ria

l
ra
di
x-
32

M
on

t.
0.
9G

8
8n

s
0.
04
9m

m
2
/9
6.
4K

G
E
s

0.
4/
0.
77

hi
gh

-r
ad

ix
M
on

tg
om

er
y
m
od

ul
ar

m
ul
tip

lic
at
io
n
fr
om

[K
K
A
K
96

]+
C
M
.o

pt
.

B
as
el
in
e
2.
0

T
SM

C
28
nm

fu
lly

pi
pe

lin
ed

ra
di
x-
16

M
on

t.
1G

16
16
ns

0.
38
m
m

2
/7
50
.9
K
G
E
s

6.
1/
12

B
as
el
in
e
2.
1

di
gi
t
se
ria

l
ra
di
x-
16

M
on

t.
1G

16
16
ns

0.
02
2m

m
2
/4
3K

G
E
s

0.
35
/0
.6
9

B
as
el
in
e
2.
2

fu
lly

pi
pe

lin
ed

ra
di
x-
32

M
on

t.
1G

8
8n

s
0.
27
m
m

2
/5
23
K
G
E
s

2.
16

/4
.2

a

B
as
el
in
e
2.
3

di
gi
t
se
ria

l
ra
di
x-
32

M
on

t.
1G

8
8n

s
0.
03
9m

m
2
/7
7K

G
E
s

0.
32

/0
.6

2a

[S
N
F+

19
]

T
SM

C
28
nm

fu
lly

pi
pe

lin
ed

ra
di
x-
32

M
on

t.
1G

13
13
ns

0.
31
m
m

2
/6
15
K
G
E
s

4.
1/

8b

[L
W

D
+
21

]
T
SM

C
65
nm

di
gi
t
se
ria

l
ra
di
x-
2
M
on

t.
1G

13
0

13
0n

s
0.
4m

m
2

52
/—

[L
W

D
+
21

]
T
SM

C
65
nm

di
gi
t
se
ria

l
ra
di
x-
4
M
on

t.
71
5M

66
92
ns

31
.7
K
G
E
s

—
/2
.9

[G
L1

9]
SM

IC
65
nm

pa
rt
ia
lly

pi
pe

lin
ed

fu
ll-
w
or
d
M
on

t.
49
8M

22
44
ns

11
7.
6K

G
E
s

—
/5
.2

[II
A
19

]
T
SM

C
65
nm

fu
lly

pi
pe

lin
ed

fu
ll-
w
or
d
M
on

t.
23
8M

14
60
ns

2.
8m

m
2

16
8/
—

[M
A
Q
SS

16
]

G
F
65
nm

pa
rt
ia
lly

pi
pe

lin
ed

N
IS
T

R
ed

uc
tio

n
24
4M

36
1

1.
48
µ
s

0.
47
m
m

2
/1
14
K
G
E
s

69
5/
16
8

[K
LC

16
]

T
SM

C
90
nm

sy
st
ol
ic

ar
ra
y

ra
di
x-
4
M
on

t.
79
4M

13
0

16
3n

s
4m

m
2

65
2/
—

T
hi

s
w

or
k

T
SM

C
28
nm

fu
lly

pi
pe

lin
ed

m
ix
ed

-r
ad

ix
M
on

t.
1.
1G

8
7.
3n

s
0.
24
m
m

2
/4
84
.1
K
G
E
s

1.
7/

3.
5

di
gi
t
se
ria

l
ra
di
x-
32

M
on

t.
1.
2G

9
7.
5n

s
0.
03
6m

m
2
/7
2.
8K

G
E
s

0.
27

/0
.5

5

T
SM

C
65
nm

d
fu
lly

pi
pe

lin
ed

m
ix
ed

-r
ad

ix
M
on

t.
42
5M

8
18
.4
ns

0.
95
m
m

2
/4
95
K
G
E
s

17
.4
/9
.1

di
gi
t
se
ria

l
ra
di
x-
32

M
on

t.
52
5M

9
17
.1
ns

0.
16
m
m

2
/8
3.
3K

G
E
s

2.
7/
1.
4

N
O
T
ES

:C
M
.o

pt
.
-c

on
st
an

t
m
ul
tip

lic
at
io
n
op

tim
iz
at
io
n.

a
:
de

on
te
s
th
e
be

st
de
sig

n
am

on
g
ba

se
lin

e
im

pl
em

en
ta
tio

ns
.

b
:
de

no
te
s
th
e
m
os
t
ad

va
nc

ed
an

d
re
la
te
d
w
or
k
in

te
rm

s
of

fu
lly

pi
pe

lin
ed

M
on

tg
om

er
y
m
ul
tip

lie
r.

c :
A
re
a
tim

e
pr
od

uc
t
(A

T
P)

is
ca
lc
ul
at
ed

as
:
x
m
m

2
×
y
ns

or
x
K
G
Es

×
y
ns

/
10
00
.

d
:
us
es

th
e
sa
m
e
pr
oc
es
s
no

de
fo
r
fa
ir

co
m
pa

ris
on

.

298 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

T
ab

le
9:

T
he

im
pl
em

en
ta
tio

n
an

d
co
m
pa

ris
io
n
ab

ou
t
la
rg
e-
sc
al
e
M
SM

ar
ch
ite

ct
ur
e

sc
h
em

e
p
la
tf
or
m

si
ze

m
od

u
lu
s

b
it
-w

id
th

N
T
T

S
u
p
p
or
t

#
P
A
D
D

w
in
d
ow

si
ze

ar
ea

(m
m

2
)

fr
eq
u
en

cy
(H

z)
cy
cl
e

(M
)

la
te
n
cy

(m
s)

[C
P
D

+
24

]
(G

P
U
)

V
10

0-
SX

M
2

(1
2n

m
)

224 222 220
38

1-
bi
t

Y
es

80
a

16
(4
.5
M
B
)

81
5

1.
23
G

15
42
.3

39
4.
4

10
5.
4

12
33
.8
7
(1
.1
×
)

31
5.
51

(1
.1
×
)

84
.2
8
(1
.2
×
)

R
T
X
30

90
(8
nm

)
82

a
62
8.
4

1.
4G

11
80
.7

29
9.
7

79
.7

84
3.
18

21
4.
94

56
.9
1

R
T
X
40

90
(4
nm

)
12
8a

60
8

2.
23
G

11
16
.2

27
7.
3

73
.3

50
0.
07

12
4.
21

32
.8
6

P
ip
eZ

K
b

[Z
W

Z+
21

]
U
M
C

28
nm

220 218 216
38

1-
bi
t

N
o

2
4

(2
.2
5K

B
)

33
.7
2

30
0M

55
.8

27
.9

13
.9

18
4
(2
.5
×
)

92
(5
.0
×
)

46
(1
0×

)

P
ip
eM

SM
[X

av
22

]
A
lv
eo

U
55

C
220 218 216

37
7-
bi
t

N
o

1
12

(2
88
K
B
)

−
12
5M

34
.1

8.
6

2.
2

27
3
(3
.7
×
)

68
.8

(3
.8
×
)

17
.6

(3
.8
×
)

C
yc
lo
ne
M
SM

[A
B
C

+
22

]
V
U
9P

F
P
G
A

226 224 222
37

7-
bi
t

N
o

1
16

(4
.5
M
B
)

−
25
0M

14
14

44
0.
3

20
4.
5

56
56

(1
.2
×
)

17
61

(1
.5
×
)

81
7.
9
(2
.8
×
)

H
ar
dC

am
lb

[R
D
Q
Y
24

]
V
U
9P

F
P
G
A

226
37

7-
bi
t

N
o

1
13

(5
76
K
B
)

−
27
8M

14
19
.4

49
68

(1
.1
×
)

T
h
is

w
or
kc

T
S
M
C

28
n
m

226 224 222 220 218 216

38
1-
b
it

Y
es

1

6/ 13
(4
.5
K
B
/

28
8K

B
)

11
.3
1/

15
.0
4

80
0M

37
31

.1
/1

73
7.
2

93
2.
8/

43
5.
7

23
3.
2/

11
0.
2

58
.3
/2

8.
9

14
.6
/8

.6
3.
7/

3.
5

46
63

.9
/2

17
1.
5

11
66

.0
/5

44
.6

29
1.
5/

13
7.
8

72
.9
/3

6.
1

18
.3
/1

0.
7

4.
6/

4.
4

2

6/ 13
(4
.5
K
B
/

28
8K

B
)

22
.6
2/

30
.0
8

80
0M

20
72

.8
/9

65
.1

51
8.
2/

24
2.
0

12
9.
6/

61
.3

32
.4
/1

6.
1

8.
1/

4.
8

2.
0/

1.
9

25
91

.1
/1

20
6.
4

64
7.
8/

30
2.
5

16
1.
9/

76
.6

40
.5
/2

0.
1

10
.1
/6

.0
2.
6/

2.
4

a
:
th
e
nu

m
be

r
of

st
re
am

in
g
m
ul
ti
pr
oc
es
so
rs

in
G
P
U
.b

:
on

ly
re
po

rt
s
th
e
cy
cl
e
co
un

t
of

bu
ck
et

ac
cu
m
ul
at
io
n
ph

as
e.

c :
w
in
do

w
si
ze
c

=
6
is

ch
os
en

as
th
e

de
fa
ul
t
co
m
pa

ri
so
n
ob

je
ct
.
th
e
re
po

rt
ed

la
te
nc
y
co
ve
rs

al
lt

hr
ee

ph
as
es

of
M
SM

.

Xiangren Chen et al. 299

Table 5: The theoretical analysis and comparison about different NTT/INTT variants

schemes sub-NTT sub-INTT BFU
type

Unified BFU
Overhead

Transpose
Overhead

TF
Storage

baseline DIF-NR DIT-RN CT+GS 1 MM+2 MA+
2 MS+4 MUX Y 2n

[ZWZ+21] DIF-NR DIT-RN CT+GS 1 MM+2 MA+
2 MS+4 MUX Y 2n

[WG23] DIF-NR No
support GS 1 MM+1 MA+

1 MS Y n

Proteus
[HMR23] DIF-NR DIF-RN GS 1 MM+1 MA+

1 MS+2 MUX N n/2

Supranational DIF-NR No
support GS 1 MM+1 MA+

1 MS N n

HardCaml DIF-NR No
support GS 1 MM+1 MA+

1 MS Y n

This work DIF-NR DIF-RN GS 1 MM+1 MA+
1 MS+2 MUX N n/2

NOTES: n denotes the length of vector. MM, MA, MS denote the modular multiplier, modular adder
and modular subtracter, respectively.

Comparisons about the NTT algorithm. Table 5 presents the algorithms used
by recent studies on ZKP-oriented NTT accelerator. [ZWZ+21] adopts the same type
of sub-NTT as the baseline. Its unified BFU requires more modular additions and
subtractions than our work. It also takes up more memory footprint for TFs and needs
extra matrix transposition. [WG23] further extends the two-dimensional NTT form
into higher dimensions, allowing for the flexible handling of vectors with different sizes.
Unfortunately, this extension consumes proportionally more Hadamard products and
transposition cost. [HMR23] conducts a thorough analysis on the bit-reversed issue and
proposes a low-cost unified butterfly unit. However, it introduces extra registers into BFU
for timing-synchronization issues inherent in SDF and MDC architectures. The teams
Supranational and HardCaml, in response to the NTT parameters specified by Zprize 2022,
also adopt the four-step NTT algorithm. Nonetheless, their approaches merely support
the NTT mode and require extra cycle count for matrix transposition as well.

NTT implementation and comparison. Table 6 presents the implementation of
NTT proposed by recent works considering different scales and platforms. The software
platform employs an Intel Xeon Gold 5120 CPU with 14 physical cores running at 2.2
GHz, alongside 252 GB DDR4 memory, leveraging the bellman library [Cor22] to compute
NTT at various scales. In contrast, our design achieves over 3000× acceleration on average.
PipeZK utilizes the same process node and off-chip memory simulator as our work, but
falls short of optimizing the large-width modular multiplier. The frequency of NTT
kernel is about 2.7× lower than our work. As a result, our design achieves almost 12.1×
acceleration and consumes 1.4× lower area cost compared to PipeZK (15.04 mm2). SAM
implements a scalable large-scale NTT design on FPGA platform. However, the adopted
SDF architecture only achieves 50% hardware utilization and the modular multiplier is
not fully pipelined, which leads to around 3.1× larger latency than our work. PROTEUS
provides an automated design tool capable of generating SDF and MDC-type pipelined
NTT hardware kernels under different parameters, but it takes no account of the latency of
DRAM access. The top two contestants in Zprize 2022 devise large-scale NTT processors
tailored for 64-bit Goldilocks modulus, both of which employ HBM to obtain high memory
bandwidth. Thanks to the special modular reduction methods, these two works easily
achieve high frequency and decent performance but only support NTT mode. The tiled
DRAM layout in this work can still be applied to these two works to avoid transposition
overhead, thereby offering the potential to further enhance overall performance.

MSM implementation and comparison. Similar to NTT, there are many designs

300 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

Table 6: The implementation and comparision about large-scale NTT/INTT architecture

schemes platform size modulus
(bits)

frequency
(Hz)

latency
(ms) memory

CPU Intel
Xeon

216

256 2.2G
511.47

off-chip220 1244.68
224 19970.75

PipeZK
[ZWZ+21]

UMC
28nm

216
256 300M 0.281 DDR+FIFO220 11

SAM
[WG23] XCU250

216

256 100M
1.24

DDR+FIFO220 12.61
224 183.56

PROTEUS
[HMR23] XCU250 216 256 125M 1.05 on-chip

SAM
[WG23] XCU250

216

64 165M
0.38

DDR+FIFO220 2.84
224 34.12

PROTEUS
[HMR23] XCU250 216 64 135M 0.44 on-chip

Supranational Varium C1100 218 64 464M 2.47 HBM+BRAM
HardCaml Varium C1100 224 64 — 168 HBM+BRAM

This work TSMC
28nm

216
256 800M 0.047 DDR+SRAM220 0.91

improving the performance of MSM with optimizations on GPU, ASIC and FPGA, as listed
in Table 9. For the GPU-based MSM implementations, recent works [LWY+23][CPD+24]
consecutively propose new parallel Pippenger algorithms to achieve nearly perfect linear
speedup and obtain load-balanced computation pattern. Compared to the 220-scale
MSM computation on the modern GPU V100 platform, our hardware accelerator still
delivers a speedup of 1.2×. It is not easy to do an apple-to-apple comparison to the MSM
implementation on FPGA, since FPGA and ASIC platforms each have their own advantages.
For instance, FPGAs possess abundant memory and parallel computing resources, but
their implementation frequency is relatively lower due to the complex routing. In contrast,
the area cost of ASIC implementation is sensitive to the memory capacity, which is the
reason why we choose a relatively small value c = 6 and leverage limited on-chip banks.
PipeMSM profiles the variation of cycle count with the window size c, and then selects a
value c = 12, which is much larger than our chosen case. CycloneMSM carefully develops
a scheduler to improve resource utilization, and adopts the mixed addition formula in
extended Twisted Edwards coordinates to trade computation with memory. It even chooses
a larger window size c = 16, capable of handling 226-scale MSM. HardCaml features a
split CPU-FPGA architecture that amortizes the bucket/group aggregation phase to the
software platform. The window size is set as c = 13 in HardCaml. On average, the speed
of our work still outperforms the above FPGA designs by 3.7×, 1.8× and 1.1×, which can
be even promoted significantly if we further increase the memory resource and number
of PADD. Compared to the most related and advanced ASIC implementation, our work
offers an average speedup of 5.8× while consumes 3.1× lower area cost. This superiority
in performance can be attributed to the highly optimized modular multiplier, configurable
PE array and dedicated scheduling mechanism.

Sensitivity study on the window size. To further enhance the performance
improvement of the proposed MSM hardware accelerator against software implementations
on the high-end powerful RTX3090/4090 GPU [CPD+24], Table 9 also manifests the latency
and area of MSM accelerator when setting the window size as c = 13 and using two parallel
kernels along with on-chip memory (#PADD = 2). As illustrated in [ZWZ+21, LWY+23],
the h = dλc e sub-tasks across different windows are independent from each other and can

Xiangren Chen et al. 301

be computed in parallel. At this time, compared to the software implementation on the
most powerful RTX4090 GPU, the speedup ratio of our accelerator is raised up to about
1.66×/1.62×/1.63× when computing 218/220/222-scale MSM, respectively. Notably, the
area consumption of our 28nm accelerator is 20.3× lower than that of RTX4090 GPU even
fabricated with 4nm process, directly leading to much higher area and power efficiency.
Additionally, we explore how the MSM latency of different sizes varies with the window
size c and the segmented degree, giving some design rationale for speed-priorized MSM
accelerators. The segmented degree refers to the number of partitioned segments during
the bucket aggregation phase using the method proposed by [Xav22]. Taking two typical
sizes as the case study, Figure 14 profiles how the latency scales with the window size and
how the segmented degree influences the curved shape, from which we make some crucial
observations as blow. Evidently, increasing the window size to some degree helps reduce
the overall MSM latency, and the turning point depends on the vector size and segmented
degree. For the 256K-point MSM, the turning point of window size happens to be around
12-14, and enlarging the segmented degree also shifts the turning point to the right. For
the 1M-point MSM, the turning point becomes much larger, and the segmented degree
has a smaller impact on the curved shape. Thus, selecting both a suitable window size
and segmented degree is of significance to seek sound balance between area and latency.

Figure 14: The variation of MSM latency with window size and segmented degree.

Discussion on the constant-time implementation. In the security-critical sce-
nario, a constant-time implementation is necessary to mitigate risks of timing attacks,
which motivates us to make an analysis from the underlying arithmetic unit to the high-level
architecture. The conditional assignment shown in the line 19-20 of Algorithm 3 may lead
to the variation of cycle count under software platforms. However, the proposed hardware
implementation for the Montgomery multiplication invariably consumes 9 cycles no matter
whether the condition meets or not. Thus, the underlying Montgomery multiplier is a
constant-time implementation. For our NTT hardware design, the overall cycle count
depends on the vector length N as shown in Section 4.2, because the on-chip butterfly
computations and hadmard products are assumed to be the bottleneck for every batch
processing, instead of the off-chip memory access. As mentioned in Section 2.1, the vector
length is determined by the number of gates transformed form the circuit program and is
a publicly known parameter. Therefore, the variation of NTT latency will not leak any
information about the private witness vector.

As for the MSM computation, the overall latency is associated with the vector length
n, the bit-width of scalar λ, the window size c and the value distribution of scalar
vector {si}i=[0,n−1], since the Pippenger algorithm is computed as the formula: O =∑n−1

i=0 si · Pi =
∑h−1
j=0 2jc

∑n−1
i=0 si,j · Pi, where h = dλc e. In the zk-SNARK protocol, the

set of scalar {si}i∈[0,n−1] will be divided into two parts, w.l.o.g., with one part being
the public inputs {si}i∈[0,k−1] and another part being the private witness {si}i∈[k,n−1].
[ZHY+24] has already made a detailed analysis to show that the publicly-known parameters

302 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

n, λ, c will not leak any information about the private witness {si}i∈[k,n−1], which can be
obviously confirmed from the workflow of zk-SNARK in Section 2.1 as well. [ZHY+24]
also mentions that its MSM software program on GPU is independent of the distribution
of scalar vector (secret inputs), since the available storage capacity is enough to assign
independent bucket space to each thread. However, the MSM latency of [CPD+24] is
related with the distribution of scalar vector, because a much larger window size is chosen,
which requires multiple threads to share bucket space. As a result, the resolution of write
conflicts may be influenced by the distribution of secret inputs, which motivates them to
propose another constant-time version of MSM. Unlike the software program, the cycle
count of our MSM hardware accelerator obviously depends on the distribution of scalar
vector, since the load-aware arbitration mechanism inherently influences the overall cycle
count. In practice, the random scalar vector is most evenly distributed, and the gap count
between two extreme cases is small. Figure 15 presents the variation of cycle count for
1K-point MSM tested with 100 random scalar vectors. The cycle difference between the
worst and best case is 56, taking up only 4.4% of the average cycle count. Thus, we would
like to remark that the constant-time patch can be trivially implemented by padding the
cycle of all cases to the worst case, and the overall performance degradation is still minor.

Figure 15: The variation of 1K-point MSM cycle with 100 random scalar vectors.

6 Conclusion

Despite the advancements in ZKP schemes, NTT and MSM still remain as the bottleneck,
consuming a significant portion of the execution time. The recent hardware optimizations
to accelerate ZKP are promising, but still use two separated data-paths for NTT and MSM,
incurring tremendous area overhead. Our work introduces a unified and high-performance
accelerator for both NTT and MSM, which employs the versatile scheduling mechanism,
novel configurable PE array, meticulous memory partitioning and so on. We make a
variety of optimizations from the modular arithmetic level to high-level NTT and MSM
architecture. For the fully-pipelined modular multiplier design, two modularized, simple
yet effective techniques are proposed to balance the pipelined workload and reduce the
length of critical path. A proof-of-concept implementation of NTT and MSM achieves
impressive improvement under TSMC 28nm synthesis. Compared to similar advanced
works about modular multipliers, LBFP MM achieves a 1.8× improvement of latency and
saves 1.3× area cost. The proposed accelerator demonstrates notable NTT and MSM
speeds that are about 12.1× and 5.8× faster than those of the state-of-the-art ASIC
designs, while still consuming 4.3× lower overall area cost. This research contributes to
the ongoing efforts to enhance the practicality and efficiency of ZKP schemes, manifesting
a promising stride towards making the proof-generation process more efficient and viable
for real-world applications. Future work would discuss profiling the accelerator from ASIC
to FPGA and adopting some optimization techniques specific to memory-rich FPGAs,
such as width-oriented DSP utilization [LP21], custom LUT-based compressors [BRM19],
and computation-memory trade-off. It is also interesting to add programmability to the
accelerator for supporting various complete ZKP schemes. We will also investigate some
side-channel protection techniques for accelerators deployed in security-critical scenarios.

Xiangren Chen et al. 303

Acknowledgements
This work is supported in part by the National Key R&D Program of China (Grant
No.2023YFB4403500), and in part by the National Natural Science Foundation of China(Grant
No. 62274102). We thank the editors and reviewers for their thoughtful comments.

References
[ABC+22] Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas

Stalder, and Javier Varela. FPGA acceleration of multi-scalar multiplication:
Cyclonemsm. IACR Cryptol. ePrint Arch., page 1396, 2022.

[AFH16] Berkin Akin, Franz Franchetti, and James C. Hoe. FFTs with near-optimal
memory access through block data layouts: Algorithm, architecture and
design automation. J. Signal Process. Syst., 85(1):67–82, 2016.

[AV20] hujw77 Alex Vlasov. Eip-2539: Bls12-377 curve operations [draft], February
2020.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 701–732. Springer, 2019.

[BDLO12] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk.
Faster batch forgery identification. In Steven D. Galbraith and Mridul Nandi,
editors, Progress in Cryptology - INDOCRYPT 2012, 13th International
Conference on Cryptology in India, Kolkata, India, December 9-12, 2012.
Proceedings, volume 7668 of Lecture Notes in Computer Science, pages 454–
473. Springer, 2012.

[BFV19] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Privacy aspects and sub-
liminal channels in zcash. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, pages 1795–1811. ACM, 2019.

[BL] Daniel J. Bernstein and Tanja Lange. Explicit-formulas database.

[BL95] Wieb Bosma and Hendrik W. Lenstra. Complete systems of two addition
laws for elliptic curves. Journal of Number Theory, 53:229–240, 1995.

[BRM19] Debapriya Basu Roy and Debdeep Mukhopadhyay. High-speed implementa-
tion of ecc scalar multiplication in gf(p) for generic montgomery curves. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 27(7):1587–
1600, 2019.

[BS91] Wayne P. Burleson and Louis L. Scharf. A VLSI design methodology for
distributed arithmetic. J. VLSI Signal Process., 2(4):235–252, 1991.

[CA07] S. Chandrasekaran and A. Amira. Novel sparse obc based distributed arith-
metic architecture for matrix transforms. In 2007 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 3207–3210, 2007.

304 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

[CDF+11] Ray C. C. Cheung, Sylvain Duquesne, Junfeng Fan, Nicolas Guillermin, Ingrid
Verbauwhede, and Gavin Xiaoxu Yao. FPGA implementation of pairings using
residue number system and lazy reduction. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES
2011 - 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings, volume 6917 of Lecture Notes in Computer Science, pages
421–441. Springer, 2011.

[Cor22] ZKCrypto Corp. bellman: a crate for building zk-snark circuits, 2022.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum
and transparent recursive proofs from holography. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume
12105 of Lecture Notes in Computer Science, pages 769–793. Springer, 2020.

[CPD+24] Yutian Chen, Cong Peng, Yu Dai, Min Luo, and Debiao He. Load-balanced
parallel implementation on GPUs for multi-scalar multiplication algorithm.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(2):522–544, 2024.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcu-
lation of complex fourier series. Mathematics of Computation, 19:297–301,
1965.

[CYY+22] Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei, and Leibo Liu.
CFNTT: scalable radix-2/4 NTT multiplication architecture with an efficient
conflict-free memory mapping scheme. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(1):94–126, 2022.

[dar19] darpa. Generating zero-knowledge proofs for defense capabilities, 2019.

[DL18] Jinnan Ding and Shuguo Li. A modular multiplier implemented with truncated
multiplication. IEEE Transactions on Circuits and Systems II: Express Briefs,
65(11):1713–1717, 2018.

[GL19] Zhen Gu and Shuguo Li. A division-free toom–cook multiplication-based
montgomery modular multiplication. IEEE Transactions on Circuits and
Systems II: Express Briefs, 66(8):1401–1405, 2019.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In Robert Sedgewick,
editor, Proceedings of the 17th Annual ACM Symposium on Theory of Com-
puting, May 6-8, 1985, Providence, Rhode Island, USA, pages 291–304. ACM,
1985.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 305–326. Springer, 2016.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. IACR Cryptol. ePrint Arch., page 953, 2019.

Xiangren Chen et al. 305

[HCG05] Yajuan He, Chip-Hong Chang, and Jiangmin Gu. An area efficient 64-bit
square root carry-select adder for low power applications. In 2005 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 4082–4085
Vol. 4, 2005.

[HMR23] Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy. Proteus: A tool to
generate pipelined number theoretic transform architectures for fhe and zkp
applications. IACR Cryptol. ePrint Arch., 2023:267, 2023.

[HWCD08] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted
edwards curves revisited. In Josef Pieprzyk, editor, Advances in Cryptology -
ASIACRYPT 2008, pages 326–343, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[IIA19] Makoto Ikeda, Tadayuki Ichihashi, and Hiromitsu Awano. 33us, 94uj optimal
ate pairing engine on bn curve over 254b prime field in 65nm cmos fdsoi. In
2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), pages 263–266,
2019.

[KKAK96] C. Kaya Koc, T. Acar, and B.S. Kaliski. Analyzing and comparing montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, 1996.

[KKK+22] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John
Kim, Minsoo Rhu, and Jung Ho Ahn. BTS: an accelerator for bootstrappable
fully homomorphic encryption. In Valentina Salapura, Mohamed Zahran, Fred
Chong, and Lingjia Tang, editors, ISCA ’22: The 49th Annual International
Symposium on Computer Architecture, New York, New York, USA, June 18 -
22, 2022, pages 711–725. ACM, 2022.

[KLC16] Shiann-Rong Kuang, Chih-Yuan Liang, and Chun-Chi Chen. An efficient
radix-4 scalable architecture for montgomery modular multiplication. IEEE
Transactions on Circuits and Systems II: Express Briefs, 63(6):568–572, 2016.

[Kun85] S. Y. Kung. Vlsi array processors. IEEE ASSP Magazine, 2:4–22, 1985.

[LFG23] Guiwen Luo, Shihui Fu, and Guang Gong. Speeding up multi-scalar multipli-
cation over fixed points towards efficient zksnarks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2023(2):358–380, 2023.

[Lon23] Patrick Longa. Efficient algorithms for large prime characteristic fields and
their application to bilinear pairings. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(3):445–472, 2023.

[LP21] Martin Langhammer and Bogdan Pasca. Efficient FPGA modular multiplica-
tion implementation. In Lesley Shannon and Michael Adler, editors, FPGA
’21: The 2021 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Virtual Event, USA, February 28 - March 2, 2021, pages 217–223.
ACM, 2021.

[LTB+23] Haocong Luo, Yahya Can Tuğrul, F. Nisa Bostancı, Ataberk Olgun, A. Giray
Yağlıkçı, and Onur Mutlu. Ramulator 2.0: A modern, modular, and extensible
dram simulator, 2023.

[LWD+21] Bing Li, Jinlei Wang, Guocheng Ding, Haisheng Fu, Bingjie Lei, Haitao
Yang, Jiangang Bi, and Shaochong Lei. A high-performance and low-cost
montgomery modular multiplication based on redundant binary representation.
IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7):2660–
2664, 2021.

306 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

[LWY+23] Tao Lu, Chengkun Wei, Ruijing Yu, Chaochao Chen, Wenjing Fang, Lei
Wang, Zeke Wang, and Wenzhi Chen. cuzk: Accelerating zero-knowledge
proof with A faster parallel multi-scalar multiplication algorithm on GPUs.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):194–220, 2023.

[LZD+24] Changxu Liu, Hao Zhou, Patrick Dai, Li Shang, and Fan Yang. Priormsm:
An efficient acceleration architecture for multi-scalar multiplication. ACM
Trans. Des. Autom. Electron. Syst., jul 2024. Just Accepted.

[MAK+23] Ahmet Can Mert, Aikata, Sunmin Kwon, Youngsam Shin, Donghoon Yoo,
Yongwoo Lee, and Sujoy Sinha Roy. Medha: Microcoded hardware accelerator
for computing on encrypted data. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(1):463–500, 2023.

[MAQSS16] Hamad Marzouqi, Mahmoud Al-Qutayri, Khaled Salah, and Hani Saleh.
A 65nm asic based 256 nist prime field ecc processor. In 2016 IEEE 59th
International Midwest Symposium on Circuits and Systems (MWSCAS), pages
1–4, 2016.

[MK22] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, and Aydin
Aysu. An extensive study of flexible design methods for the number theoretic
transform. IEEE Transactions on Computers, 71(11):2829–2843, 2022.

[MLPJ13] Yuan Ma, Zongbin Liu, Wuqiong Pan, and Jiwu Jing. A high-speed elliptic
curve cryptographic processor for generic curves over gf(p). In Tanja Lange,
Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography -
SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-
16, 2013, Revised Selected Papers, volume 8282 of Lecture Notes in Computer
Science, pages 421–437. Springer, 2013.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44:519–521, 1985.

[MR18] Debdeep Mukhopadhyay and Debapriya Basu Roy. Revisiting FPGA imple-
mentation of montgomery multiplier in redundant number system for efficient
ECC application in gf(p). In 28th International Conference on Field Pro-
grammable Logic and Applications, FPL 2018, Dublin, Ireland, August 27-31,
2018, pages 323–326. IEEE Computer Society, 2018.

[MXS+23] Weiliang Ma, Qian Xiong, Xuanhua Shi, Xiaosong Ma, Hai Jin, Haozhao
Kuang, Mingyu Gao, Ye Zhang, Haichen Shen, and Weifang Hu. GZKP: A
GPU accelerated zero-knowledge proof system. In Tor M. Aamodt, Natalie
D. Enright Jerger, and Michael M. Swift, editors, Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC,
Canada, March 25-29, 2023, pages 340–353. ACM, 2023.

[Oru95] Holger Orup. Simplifying quotient determination in high-radix modular
multiplication. In 12th Symposium on Computer Arithmetic (ARITH-12 ’95),
July 19-21, 1995, Bath, England, UK, page 193. IEEE Computer Society,
1995.

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems. In
17th Annual Symposium on Foundations of Computer Science (sfcs 1976),
pages 258–263, 1976.

Xiangren Chen et al. 307

[PR18] Somnath Panja and Bimal Kumar Roy. A secure end-to-end verifiable e-voting
system using zero knowledge based blockchain. IACR Cryptol. ePrint Arch.,
page 466, 2018.

[Pru22] Alex Pruden. Announcing the inaugural zprize competition results, 2022.

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas
for prime order elliptic curves. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, pages 403–428, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[RDQY24] Andy Ray, Benjamin Devlin, Fu Yong Quah, and Rahul Yesantharao. Hard-
caml msm: A high-performance split cpu-fpga multi-scalar multiplication
engine. In Proceedings of the 2024 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA ’24, page 33–39, New York, NY,
USA, 2024. Association for Computing Machinery.

[Sch96] J.C. Schatzman. Index mappings for the fast fourier transform. IEEE
Transactions on Signal Processing, 44(3):717–719, 1996.

[SFK+21] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas,
Ronald G. Dreslinski, Christopher Peikert, and Daniel Sánchez. F1: A fast
and programmable accelerator for fully homomorphic encryption. In MICRO
’21: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
Virtual Event, Greece, October 18-22, 2021, pages 238–252. ACM, 2021.

[SNF+19] Junichi Sakamoto, Yusuke Nagahama, Daisuke Fujimoto, Yota Okuaki, and
Tsutomu Matsumoto. Low-latency pairing processor architecture using fully-
unrolled quotient pipelining montgomery multiplier. In 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), pages 1–6, 2019.

[TAL93] Richard Tolimieri, Myoung An, and Chao Lu. Multidimensional Tensor
Product and FFT, pages 29–43. Springer US, New York, NY, 1993.

[Tea22] Polygon Zero Team. Plonky2: Fast recursive arguments with plonk and fri,
2022.

[WB19] Riad S. Wahby and Dan Boneh. Fast and simple constant-time hashing to
the BLS12-381 elliptic curve. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(4):154–179, 2019.

[WG23] Cheng Wang and Mingyu Gao. Sam: A scalable accelerator for number theo-
retic transform using multi-dimensional decomposition. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages 1–9,
2023.

[Xav22] Charles F. Xavier. Pipemsm: Hardware acceleration for multi-scalar multipli-
cation. IACR Cryptol. ePrint Arch., page 999, 2022.

[XHY+20] Guozhu Xin, Jun Han, Tianyu Yin, Yuchao Zhou, Jianwei Yang, Xu Cheng,
and Xiaoyang Zeng. VPQC: A domain-specific vector processor for post-
quantum cryptography based on RISC-V architecture. IEEE Trans. Circuits
Syst. I Regul. Pap., 67-I(8):2672–2684, 2020.

[XZL+23] Zhibo Xing, Zijian Zhang, Jiamou Liu, Ziang Zhang, Meng Li, Liehuang
Zhu, and Giovanni Russello. Zero-knowledge proof meets machine learning in
verifiability: A survey, 2023.

308 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

[YZF+23] Yinghao Yang, Huaizhi Zhang, Shengyu Fan, Hang Lu, Mingzhe Zhang, and
Xiaowei Li. Poseidon: Practical homomorphic encryption accelerator. In
IEEE International Symposium on High-Performance Computer Architecture,
HPCA 2023, Montreal, QC, Canada, February 25 - March 1, 2023, pages
870–881. IEEE, 2023.

[ZCP23] Bo Zhang, Zeming Cheng, and Massoud Pedram. An iterative montgomery
modular multiplication algorithm with low area-time product. IEEE Trans.
Computers, 72(1):236–249, 2023.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. vsql: Verifying arbitrary SQL queries over
dynamic outsourced databases. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 863–880.
IEEE Computer Society, 2017.

[ZHLH23] Baoze Zhao, Wenjin Huang, Tianrui Li, and Yihua Huang. Bstmsm: A high-
performance fpga-based multi-scalar multiplication hardware accelerator. In
2023 International Conference on Field Programmable Technology (ICFPT),
pages 35–43, 2023.

[ZHY+24] Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao, and Rui
Hou. Elastic MSM: A fast, elastic and modular preprocessing technique for
multi-scalar multiplication algorithm on gpus. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2024(4):258–284, 2024.

[ZWZ+21] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan
Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. Pipezk:
Accelerating zero-knowledge proof with a pipelined architecture. In 48th
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2021, Virtual Event / Valencia, Spain, June 14-18, 2021, pages 416–
428. IEEE, 2021.

Xiangren Chen et al. 309

Appendix

Table 7: The constant factors under different radices for BLS12-381 curve.
Radices FM(256-bit) FQ(384-bit)
R1 = 232 0xffffffff 0xfffcfffd
R2 = 232 0xffffffff 0xfffcfffd
R3 = 248 0xfffeffffffff 0xfffcfffcfffd
R4 = 264 0xfffffffeffffffff 0x89f3fffcfffcfffd
R5 = 280 0xfffe5bfdfffffffeffffffff 0x13e889f3fffcfffcfffd
R6 = 2128 0x286adb92d9d113e889f3fffcfffcfffd

A Details for MSM Mode

Figure 16 presents the concrete dataflow of PADD unit under the complete point addition
formula [RCB16][BL95], where the affine coordinate is replaced by the homogeneous pro-
jective coordinates: (x, y)→ (X/Z, Y/Z). After serious investigations into [BL][HWCD08],
it is believed that another appealing choice is the point addition formula under extended
Twisted Edwards coordinates, which also obtains judicious trade-off between computation
and memory. As introduced in Section 3.1 of [HWCD08], it is strongly unifield and
complete, necessitating a total of 9 MMs, 2 CMs and 9 MAs. Although the configurable
and unified design methodology can be readily adapted to the new choice of formula, only
one PADD unit is allowed by reusing the given #16 PEs as well. Thus, the improvement
in terms of speed would be slight from the holistic and practical view. Figure 17 portrays
the timing diagram for the 16-point bucket accumulation under one slice of the scalar
vector, where the arbitration cases are explictly labelled at every cycle.

+x x x + + + + +

+ + + x x x

2D 2D x12 - - -

x12 + - D x12 D

x x x x x x

- + -
𝑿𝟑 𝒀𝟑 𝒁𝟑

𝑿𝟏 𝑿𝟐 𝒀𝟏 𝒀𝟐 𝒁𝟏 𝒁𝟐 𝑿𝟏 𝒀𝟏 𝑿𝟐 𝒀𝟐 𝑿𝟏 𝒁𝟏 𝑿𝟐 𝒁𝟐 𝒀𝟏 𝒁𝟏 𝒀𝟐 𝒁𝟐

B
FU

0

B
FU

1

B
FU

2

B
FU

3

B
FU

4

B
FU

5

B
FU

6

B
FU

7

B
FU

8

B
FU

0

B
FU

1

B
FU

2

B
FU

9

B
FU

10

B
FU

11

B
FU

9

B
FU

10

B
FU

11

B
FU

8

B
FU

9

B
FU

3

B
FU

4

B
FU

5

B
FU

6

B
FU

7

B
FU

8

B
FU

7

B
FU

10

B
FU

11

BFUi: used as MM

BFUi: used as MA

BFUi: used as MS

Figure 16: The dataflow of PADD and interconnections among 12 PEs.

310 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

Phase 1: Fill the pipeline path of PADD
case0a case0a case0a case0a case0b case0b case0a case0b case0b

time 0 1 2 3 4 5 6 7 8

scalar mem 3 1 0 2 3 2 3 1 3

point mem P0 P1 P2 P3 P4 P5 P6 P7 P8

bucket1 P1 P1 P1 P1 P1 P1

bucket2 P3 P3

bucket3 P0 P0 P0 P0 P6 P6

padd_stage0 (3,P4,P0) (2,P5,P3) (0,0,0) (1,P7,P1)

padd_stage1 (3,P4,P0) (2,P5,P3) (0,0,0)

padd_stage2 (3,P4,P0) (2,P5,P3)

padd_stage3 (3,P4,P0)

Phase 2: Read out all the curve points of Point Memory
case2a case2b case0b case2a case2a case0b case1

time 9 10 11 12 13 14 15

scalar mem 1 1 2 3 2 3 1

point mem P9 P10 P11 P12 P13 P14 P15

bucket1 P9 Q2 Q2 Q2

bucket2 Q1 P13 P13

bucket3 Q0 Q0 Q0 Q3

padd_stage0 (3,P8,P6) (0,0,0) (1,P10,P9) (2,P11,Q1) (3,P12,Q0) (0,0,0) (3,P14,Q3)

padd_stage1 (1,P7,P1) (3,P8,P6) (0,0,0) (1,P10,P9) (2,P11,Q1) (3,P12,Q0) (0,0,0)

padd_stage2 (0,0,0) (1,P7,P1) (3,P8,P6) (0,0,0) (1,P10,P9) (2,P11,Q1) (3,P12,Q0)

padd_stage3 (2,P5,P3) (0,0,0) (1,P7,P1) (3,P8,P6) (0,0,0) (1,P10,P9) (2,P11,Q1)

result buffer
(3,P4,P0)/

Q0
(2,P5,P3)/

Q1
(0,0,0)

(1,P7,P1)/
Q2

(3,P8,P6)/
Q3

(0,0,0)
(1,P10,P9)

/Q4

Phase 3: Point Memory is empty but Result buffer is being cleared
case3b case3a case4 case3b case3b case3a case3a case3a case3a case3a case3a

time 16 17 18 19 20 21 22 23 24 25 26

bucket1 Q2 Q2 Q2 Q2 Q2 Q11

bucket2 P13 Q9 Q9 Q9 Q9 Q9

bucket3 Q6 Q6 Q10 Q10

padd_stage0 (1,P15,Q4) (2,P13,Q5) (0,0,0) (0,0,0) (3,Q6,Q7) (1,Q2,Q8) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

padd_stage1 (3,P14,Q3) (1,P15,Q4) (2,P13,Q5) (0,0,0) (0,0,0) (3,Q6,Q7) (1,Q2,Q8) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
padd_stage2 (0,0,0) (3,P14,Q3) (1,P15,Q4) (2,P13,Q5) (0,0,0) (0,0,0) (3,Q6,Q7) (1,Q2,Q8) (0,0,0) (0,0,0) (0,0,0)

padd_stage3 (3,P12,Q0) (0,0,0) (3,P14,Q3) (1,P15,Q4) (2,P13,Q5) (0,0,0) (0,0,0) (3,Q6,Q7) (1,Q2,Q8) (0,0,0) (0,0,0)

result buffer
(2,P11,Q1)

/Q5
(3,P12,Q0)

/Q6
(0,0,0)

(3,P14,Q3)
/Q7

(1,P15,Q4)
/Q8

(2,P13,Q5)
/Q9

(0,0,0) (0,0,0)
(3,Q6,Q7)/

Q10
(1,Q2,Q8)/

Q11

P0 3

P1 1

P2 0

P3 2

P4 3

P5 2

P6 3

P7 1

P8 3

P9 1

P10 1

P11 2

P12 3

P13 2

P14 3

P15 1

SM.PM. SM.PM.

sliced by 2-bit

Figure 17: An example of timing diagram for 16-point bucket accumulation.

B Off-chip Memory Access Scheme
We adopt the four-step NTT algorithm to decompose lengthy one-dimension vectors into
appropriately sized two-dimensional matrices, facilitating the parallel and independent
processing of each row and column using sub-NTTs. However, if we simply store the matrix
in DRAM row by row (or column by column), it may incur large strides when accessing the
columns (or rows) of the matrix, leading to frequent row buffer miss. To mitigate this issue
and avoid additional overhead of matrix transposition, we adopt a tiled memory layout
approach to store the matrix [AFH16], as illustrated in Figure 18. First, we reorganize
the original vector data into a logical NR ×NC matrix, which is further partitioned into
data blocks of Nx ×Ny dimension. The second step entails mapping each data block to
every row in DRAM, ensuring that accessing the data within the block will not result in
row buffer misses. Finally, Figure 18 illustrates the rearranged DRAM layout along with
the address sequences when performing row-wise and column-wise sub-NTT, respectively.
Here, we try to organize the data in a square matrix form (Nx = Ny), which aims to fully
utilize the on-chip memory during either row-wise or column-wise sub-NTT. The black
dashed boxes in Figure 18 denote the maximal amount of data that can be accommodated
into on-chip memory banks, specifically equal to N -row or M -column data blocks, which
is also referred to as one batch of data transfer from off-chip to on-chip memory.

As can be observed from Figure 18, accessing data in blocks ensures that both row-wise
and column-wise access are performed with almost contiguous address, which averts the

Xiangren Chen et al. 311

impact of stride access and minimizes the frequency of row buffer miss. To implement the
tiled DRAM data layout, we need to devise a two-layer address mapping logic interface.
The first-layer logic interface maps the row-wise addresses of matrix into the tiled-wise
addresses, which are comprised of inter-block and intra-block row/column IDs. The second-
layer logic interface then converts the obtained tiled addresses into physical addresses for
the DRAM, including the channel, rank, bank group, bank, row, and column fields. This
DRAM layout can be readily initialized during the data transfer from CPU to DDR, which
requires no extra execution time and other resource cost.

𝑨𝟎,𝟎 → 𝑨𝟏,𝟎 → ⋯ → 𝑨𝑴−𝟏,𝟎 → 𝑨𝟎,𝟏 → 𝑨𝟏,𝟏 → ⋯ → 𝑨𝑴−𝟏,𝟏

→ ⋯ → 𝑨𝟎,𝑵−𝟏 → 𝑨𝟏,𝑵−𝟏 → ⋯ → 𝑨𝑴−𝟏,𝑵−𝟏

𝑨𝟎,𝟎 → 𝑨𝟎,𝟏 → ⋯ → 𝑨𝟎,𝑵−𝟏 → 𝑨𝟏,𝟎 → 𝑨𝟏,𝟏 → ⋯ → 𝑨𝟏,𝑵−𝟏

→ ⋯ → 𝑨𝑴−𝟏,𝟎 → 𝑨𝑴−𝟏,𝟎 → ⋯ → 𝑨𝑴−𝟏,𝑵−𝟏

𝑵𝒙

𝑵𝒚

𝑨𝟎,𝟎 𝑨𝟎,𝟏 𝑨𝟎,𝑵−𝟏

𝑨𝑴−𝟏,𝑵−𝟏

𝑨𝟏,𝟎 𝑨𝟏,𝟏 𝑨𝟏,𝑵−𝟏

𝑨𝑴−𝟏,𝟎 𝑨𝑴−𝟏,𝟏

…

…

… …

𝑵𝑪

𝑵𝑹

(𝟎, 𝑵𝒙-𝟏)(𝟎, 𝟎) … (𝟏, 𝑵𝒙-𝟏)…(𝟏, 𝟎) … (𝟏, 𝑵𝒙-𝟏)…

(𝑵𝒚-𝟏, 𝑵𝒙-𝟏)

(𝟎, 𝟎) (𝟎, 𝟏) (𝟎, 𝑵𝒙-𝟏)

(𝑵𝒙-𝟏, 𝟎) (𝑵𝒙-𝟏, 𝟏)

…

(𝟏, 𝟎) (𝟏, 𝟏) (𝟏, 𝑵𝒙-𝟏)

(𝟐, 𝟎) (𝟐, 𝟏) (𝟐, 𝑵𝒙-𝟏)

…

…

…

… … …

𝑵𝒙

𝑵𝒚

…

𝑨𝟎,𝟎

𝑨𝟎,𝟖

𝑨𝟎,𝑵−𝟖

𝑨𝟏,𝟎

𝑨𝟏,𝟖

𝑨𝟏,𝑵−𝟖

𝑨𝑴−𝟏,𝟎

𝑨𝑴−𝟏,𝑵−𝟖

…

…

…

…

𝑨𝟎,𝟏

𝑨𝟎,𝟕

…

𝑫𝑹𝑨𝑴 𝒓𝒐𝒘 𝒔𝒊𝒛𝒆 = 𝑵𝒙 × 𝑵𝒚 × 𝒄𝒆𝒍𝒍 𝒘𝒊𝒅𝒕𝒉

#
𝟎

#
𝟏

#
𝑴

-𝟏

① 2D logic tiled data layout ② mapping each tile to each row of DRAM

𝑁𝐶 = 𝑁 × 𝑁𝑥 𝑁𝑅 = 𝑀 × 𝑁𝑦

…#𝟎 #𝟏 #𝑵𝒙-𝟏

③
D

R
A

M
 d

a
ta

 l
a

yo
u

t

address sequence for row-NTT address sequence for column-NTT1 2

Figure 18: The mapping process from tiled matrix to DRAM layout.

C Index-mapping based Four-step NTT
First, the basic form is written as:

Ai =
N−1∑
j=0

aj · ωijN mod M, i = 0, 1, ..., N − 1. (8)

If we map the one-dimension vector of length N into the N1 ×N2 two-dimensional matrix,
i.e., n = N2 · n1 + n2 for n = 0, 1, ..., N − 1;n1 = 0, 1, ..., N1 − 1;n2 = 0, 1, ..., N2 − 1, the
indices i and j can be expressed as a bivariate function:

j = N2 · j1 + j2 mod N, i = i1 +N1 · i2 mod N, N = N1 ·N2 (9)

Here, j1, i1 ∈ [0, N1 − 1] and j2, i2 ∈ [0, N2 − 1]. Thus, we obtain the following expression:

Ai1+N1·i2 =
N1−1∑
j1=0

N2−1∑
j2=0

aN2·j1+j2 · ω
ij
N mod M (10)

Defining the two-dimention array Â and â gives that:

Â[i1, i2] =
N1−1∑
j1=0

N2−1∑
j2=0

â[j1, j2] · ωijN mod M (11)

312 A High-performance NTT/MSM Accelerator for Zero-knowledge Proof

with ωijN = ωi1·j2 mod N
N · ωi1·j1 mod N

N1
· ωi2·j2 mod N

N2
. Building upon the above derivation, we

can further apply the decomposition technique to vectors of length N1 and N2, respectively.
Finally, we obtain the basic form of four-step NTT:

Â[i1, i2] =
N1−1∑
j1=0


N2−1∑
j2=0

â[j1, j2] · ωi2·j2
N2

 · ωi1·j2
N

 · ωi1·j1
N1

mod M (12)

Algorithm 4 Optimized four-step NTT/INTT algorithm
Input: a(x) is the polynomial of degree N − 1 with coefficients forming the vector a = (a0, a1, ..., aN−1).
ωN is the N -th primitive root of unity over FM. N = N1 ×N2.
Output: A(x) = Four-step-NTT(a(x)), a(x) = Four-step-INTT(A(x)).
1: Rearrange the vector a into column-wise matrix:
2: âN1×N2 = matrix(a) . the element at row i, column j is â[i, j] ∈ âN1×N2 .
3: Perform four-step NTT:
4: STEP 1: Perform sub-NTT for each row:
5: for i = 0 to N1 − 1 do
6: â[i, :] = DIF-NR-NTT(â[i, :]) . natural order input and bit-reversed order output.
7: end for
8: STEP 2: Perform inner product with twiddle factor:
9: for i = 0 to N1 − 1 do
10: for j = 0 to N2 − 1 do
11: â[i, j] = â[i, j] · ωi·bit-reversed(j)

N mod M
12: end for
13: end for
14: STEP 3: Perform transposition: . this operation could be avoided by using tiled layout.
15: âN2×N1 = âTN1×N2
16: STEP 4: Perform sub-NTT for each column:
17: for i = 0 to N2 − 1 do
18: â[i, :] = DIF-NR-NTT(â[i, :]) . natural order input and bit-reversed order output.
19: end for
20: A(x) = vector(âN2×N1)
21: Perform four-step INTT:
22: STEP 1: Perform sub-INTT for each column:
23: for j = 0 to N2 − 1 do
24: â[i, :] = DIF-RN-INTT(â[i, :]) . bit-reversed order input and natural order output.
25: end for
26: STEP 2: Perform inner product with twiddle factor:
27: for i = 0 to N2 − 1 do
28: for j = 0 to N1 − 1 do
29: â[i, j] = −â[i, j] · ωN/2−bit-reversed(i)·j

N mod M . reusing the twiddle factor of NTT.
30: end for
31: end for
32: STEP 3: Perform transposition: . this operation could be avoided by using tiled layout.
33: âN1×N2 = âTN2×N1
34: STEP 4: Perform sub-INTT for each row:
35: for i = 0 to N1 − 1 do
36: â[i, :] = DIF-RN-INTT(â[i, :]) . bit-reversed order input and natural order output.
37: end for
38: a(x) = vector(âN1×N2)
39: return A(x), a(x)

Xiangren Chen et al. 313

Algorithm 5 DIF-NR radix-2 NTT algorithm
Input: a(x) is the polynomial of degree n-1 with coefficients forming the vector a = (a0, a1, ..., an−1).
ωn is the n-th primitive root of unity over FM.
Output: A(x) = DIF-NR-NTT(a(x)).
1: Precompute the twiddle factors:
2: for i = 0 to n/2− 1 do
3: ω_ROM[i] = ωin
4: end for
5: Perform the NTT operation:
6: for p = log2n− 1 to 0 do
7: J = 2p
8: S = n/(2 · J)
9: for k = 0 to S − 1 do
10: for j = 0 to J − 1 do
11: ω = ω_ROM[j · S] . read out the twiddle factor.
12: u = a2·k·J+j
13: v = a2·k·J+j+J
14: a2·k·J+j = u+ v mod M
15: a2·k·J+j+J = (u− v) · ω mod M . Gentleman-Sande BFU.
16: end for
17: end for
18: end for
19: return A(x) = a . bit-reversed order output.

Algorithm 6 DIF-RN radix-2 INTT algorithm
Input: a(x) is the polynomial of degree n-1 with coefficients forming the vector a = (a0, a1, ..., an−1).
ωn is the n-th primitive root of unity over FM.
Output: A(x) = DIF-RN-INTT(a(x)).
1: for p = 0 to log2n− 1 do
2: J = 2p
3: S = n/(2 · J)
4: for k = 0 to S − 1 do
5: ω = −ω_ROM[n/2− bit-reversed(k)] mod M . reuse the twiddle factor of NTT.
6: for j = 0 to J − 1 do
7: u = a2·k·J+j
8: v = a2·k·J+j+J
9: a2·k·J+j = (u+ v)/2 mod M
10: a2·k·J+j+J = [(u− v) · ω]/2 mod M . Gentleman Sande IBFU.
11: end for
12: end for
13: end for
14: return A(x) = a . natural order output.

	Introduction
	Preliminaries
	The Role of NTT & MSM within ZKP
	Motivations & Design Challenges
	Four-step NTT
	Pippenger Algorithm
	Montgomery Modular Multiplication

	Proposed Dual-precision LBFP MM
	Analysis on Existing Montgomery MM
	Proposed Modularized and Efficient Techniques
	Case Study: Dual-precision MM for BLS12-381 Curve

	Unified Accelerator for NTT & MSM
	High-level Architecture Overview
	Optimization Strategies for NTT Mode
	Optimization Strategies for MSM Mode

	Implementation Results and Comparisons
	Evaluations on LBFP Modular Multiplier
	Evaluations on the Overall Architecture

	Conclusion
	Details for MSM Mode
	Off-chip Memory Access Scheme
	Index-mapping based Four-step NTT

