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Abstract. The prevalence of memory-unsafe software prompts significant efforts by
the research community to mitigate memory corruption bugs. This endeavor is crucial
for safeguarding critical systems against security threats. Specifically, there is a focus
to protect against code-reuse attacks through enforcing control-flow integrity (CFI).
This paper introduces call rewinding, a novel microarchitecture-level mechanism for
protection of return addresses. It is based on a property of the calling convention
that is common to major architectures such as x86, ARM and RISC-V, which states
that all return instructions transfer control to a valid call site. Call rewinding
consists of jumping to the instruction preceding the return target for each return
instruction and checking if the instruction at this address is a call or not. On systems
equipped with return address prediction, a commonly employed optimization, the
security check is performed only on mispredicted return addresses. The proposed
protection mechanism demonstrates negligible impact on both area and performance.
We implement call rewinding on the CV64A6, a RISC-V CPU with consequent branch
prediction support. Our evaluation validates the effectiveness of call rewinding, both
in bare-metal and in a Linux operating system (OS) environment. It triggers no
false positives in bare-metal and is functional with the OS extended with a custom
exception handler. Furthermore, our findings indicate that call rewinding successfully
detects unauthorized return addresses, highlighting its potential as a reliable and
efficient security mechanism.
Keywords: control-flow integrity · return-oriented programming · RISC-V · shadow
stack · branch prediction

1 Introduction
While memory safe languages, like Rust [MK14], are getting increasingly popular nowadays,
a lot of legacy software is written in memory unsafe languages. Over the years memory
corruption exploits have received a lot of attention from both industry and academic
communities. Initially, hackers injected easily detectable standalone payloads [One96], and
efficient countermeasures were proposed, like data execution prevention (DEP) [Mic12].
However, complex exploits and especially code-reuse attacks (CRAs) like return-oriented
programming (ROP) [RBSS12] and return-to-libc [Des97] have been used to bypass these
defenses. CRAs reuse parts of the binary application for malicious purposes, making them
hard to protect against.

Certain existing mitigation methods, based on compiler modifications or binary rewrit-
ing, aim to detect and eliminate code sections vulnerable to reuse by attackers [OBL+10].
Techniques like address space layout randomization (ASLR) [Tea03] introduce code address
randomness, making it harder for attackers to find the location of the code to be reused.
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Yet it has been shown that information leakage can nullify the shuffling, and exploits
still remain achievable [SMD+13]. Additionally, control-flow integrity (CFI) [ABEL09]
techniques prevent arbitrary control-flow transfers by insuring that an application follows
its predetermined control-flow graph (CFG). The CFG is computed based on the source
code and supposedly contains valid edges, i.e. valid flow of control between statements,
that are checked for during runtime. While originally CFI—through the computation of
the CFG—was exclusively software-based, many hardware solutions arose [dCV17]. This
is especially true for shadow stacks [BZP19, DMW15, DHP+15, DBGJ19].

However, these approaches often come at the cost of performance or complexity,
reducing their overall usability [BCN+17]. Although the increased density of modern
embedded chips allows more complex systems on chip to be designed, gate count and
area are still important concerns in the industry. Increasing awareness about energy
consumption makes this issue even more critical. Optimally protective countermeasures
are often not implemented due to the required memory space or hardware resources, or the
resulting slow-down. Hence, there is a need for efficient measures that bring a sufficient
degree of security while seamlessly integrating into the system. Developing defenses in the
microarchitecture participates to this effort, as it can reduce the cost in memory space
and performance loss.

In this paper, we propose call rewinding, an innovative and low-cost countermeasure
to protect backward edges in central processing units (CPUs), which does not require
applications to be recompiled. It is based on a property of the calling convention common to
major architectures (like x86, ARM and RISC-V), according to which all return instructions
transfer control to a valid call site. Call rewinding consists of fetching the instruction
preceding the return target address for each return instruction in order to check if the
instruction at this address is a call and raising an exception otherwise. This instruction
is not executed by the CPU. On processors equipped with a return address stack (RAS),
only mispredicted returns need to trigger a check, as the RAS predictions are trusted.

To validate the approach of call rewinding, we focus on RISC-V based processors,
taking advantage of the openness of its instruction set architecture (ISA) and application
binary interface (ABI). The RISC-V ISA is an open-source architecture perfectly suited for
experimenting innovative countermeasures. It is very popular in the research community for
testing both attacks [JMA+20, BGPK24] and protections [HVW+21, DBGJ19]. Moreover,
several CPUs are backed by the industry and on products, like the CV64A6 [ZB19] and
Ibex1. Despite the inherent security advantages of RISC ISAs due to their smaller attack
surface compared to CISC ISAs [KOAGP12], systems using RISC architectures, especially
in critical areas like industrial control or cyber-physical systems, are sensitive to potential
threats with significant consequences. The open nature of the RISC-V ISA offers security
benefits by learning from past experience and allows for community review, fostering
trust in the architecture. While RISC-V allows for the design of a wide range of cores,
from simple digital signal processors (DSPs) to high-end CPUs, its most common usage
nowadays is in embedded systems, which implies limited resources and high power-efficiency
context. This is the specific challenge we address in this work.

We have deployed call rewinding on the CV64A6, a RISC-V CPU equipped with
consequent branch prediction capabilities. Its ability to boot Linux facilitates testing the
solution within an operating system (OS) environment. Consequently, our evaluation
shows the effectiveness of call rewinding in both bare-metal configurations and when
operating alongside an OS. It does not generate false positives when operating directly on
hardware and remains operational even when integrated with an OS supplemented with
a custom exception handler. Finally, our results indicate that call rewinding effectively
identifies unauthorized return addresses, making it a dependable and effective security
augmentation.

1https://github.com/lowRISC/ibex

https://github.com/lowRISC/ibex
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Contributions. We summarize our contributions as follows:

• a novel, purely hardware-based method, called call rewinding, to dynamically detect
invalid return addresses;

• its implementation on a popular RISC-V CPU, the CV64A6;

• a security analysis of call rewinding against a wide range of exploits;

• a proof-of-concept support for call rewinding in a Linux kernel;

• an evaluation of ROP gadgets reduction and performance overhead induced by call
rewinding, confirming its capacity as a reliable and efficient security enhancement.

Outline. The remainder of this paper is organized as follows. Section 2 provides necessary
background on ROP and shadow stacks. A study of related works is presented in Section 3
and further relevant concepts and definitions are presented in Section 4. Section 5 describes
the proposed call rewinding technique. Its implementation is presented in Section 6.
Section 7 presents the evaluation results. A general discussion on call rewinding is provided
in Section 8 and potential threats to validity are addressed in Section 9. Finally, conclusions
are given in Section 10.

2 Background
2.1 Return Oriented Programming
Injecting payloads in memory to be executed is one of the earliest techniques of attacks.
Several countermeasures were introduced to mitigate this type of abuse like DEP or ASLR.
CRAs were then introduced to bypass these protections. Instead of injecting specially
crafted code, control-flow of a targeted program is abused to rearrange instructions in a
specific order that performs a malicious exploit.

Return-oriented programming is a popular CRA used by hackers to divert the control-
flow of an application and target assets. It is a generalization of return-to-libc that allows
an attacker to perform a malicious return into a function in the C standard library. It works
by chaining together short sequences of instructions already present in the application,
called gadgets. ROP allows for a chain of several gadgets, only limited by the stack’s depth.
The term return-oriented comes from the fact that the attacker constructs a chain of
gadgets ending by return instructions, each pointing to the next gadget. Shasham [Sha07]
defined the term gadget and also showed for the application used in their work that a set
of gadgets can be Turing-complete.

In return-oriented programming, the attacker gains control over the program’s execution
flow by manipulating the stack. The attacker overwrites the return address on the stack
with the address of a gadget. When the function returns, control is transferred to the
attacker’s chosen address. To build a gadget chain, an attack must link all return addresses
on the stack in a chain. Each return instruction transfers control to the next gadget in the
chain. Executed in a crafted sequence, these gadgets can perform malicious actions. The
attacker’s goal can be for example to spawn a shell, or, use mprotect function to make a
memory page writable and executable and then execute injected code.

In the context of a ROP exploit, the attacker must have access to the memory space.
The attacker has to parse the binary and search for gadgets, i.e. sequences of instructions
that end with a return instruction. Each gadget can perform one or more operations, like
a memory access, an arithmetic operation or a system call.

For an attacker to launch the execution of a ROP gadget chain, at least two events
need to happen:
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Figure 1: Stack content before and after exploitation of a software vulnerability.

1. The attacker must exploit a software vulnerability to smash the program stack and
overwrite the return address to point to the first gadget of the chain;

2. The stack must be filled with the addresses of the next gadgets [RBSS12] so that
they can be chained together, as shown in Figure 1.

2.2 Shadow Stacks
A shadow stack is a popular countermeasure to protect backward edges, i.e. return from
functions, against abuses on return addresses. It serves the purpose of preserving a
duplicate of the return address in a secure memory region, in addition to it being stored
on the regular program stack. The primary goal of the shadow stack is to ensure the
integrity of control transfers during returns, particularly in scenarios involving indirect
(i.e. from a register) or direct calls, a concept commonly referred to as backward-edge
protection. Different approaches exist to implement shadow stacks. Parallel shadow stacks
are entire copies of the regular stack, while compact shadow stacks only save the return
address. Example of a compact shadow stack is showed in Figure 2. Before returning
from the called function, integrity of the return address is checked by comparing the two
previously stored addresses. If there is a mismatch, the system reacts accordingly by
raising an exception, which can eventually lead to a halt in execution. In some cases, only
the return address from the shadow stack is used to avoid the performance penalty from
the comparison [BZP19].

Shadow stacks are widely used in the literature [SAD+16, DBGJ19, SGS19, DMW15,
BZP19] and exist on several architectures to enforce a strict backward-edge policy. This
protection is particularly efficient against ROP and return-to-libc attacks, that exclusively
rely on backward-edge abuses. However, design constraints should be considered when
implementing a shadow stack. To be fully operational, it must have a sufficiently large
memory area and it must be context-aware, so that shadow stacks can be saved and
restored when switching processes.

The RISC-V ISA has its own specification extension of a shadow stack [SS-23] under
development. It introduces custom instructions and control and status registers (CSRs) to
manage it, as well as general rules to control it in hardware. The architecture introduces
a register called shadow-stack-pointer (ssp), which holds the address of the top of the
active shadow stack. Similar to the regular stack, the shadow stack grows in a downward
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Figure 2: Regular stack and an associated compact shadow stack.

direction, progressing from higher memory addresses to lower ones. Implementing a
RISC-V shadow stack in a CPU implies toolchain modifications to support the custom
instructions and an OS able to manage the shadow stacks on a per process basis. This type
of implementation can be impactful on the development process as it requires software,
hardware and toolchain modifications.

3 Related Work
Existing countermeasures to protect against ROP are already based on the hypothesis
that all destinations of return instructions are preceded by a call. This hypothesis is valid
in all major architectures and it is specified in their ABI. Bin-CFI [ZS13] exploits this
property to enforce a relaxed CFI policy by instrumenting and rewriting binaries, which
is costly on the toolchain and on performance. It can be also verified when performing
critical operations such as system calls. Taking advantage of the Last Branch Records
(LBR) registers of the x86 architecture, kBouncer [PPK13] does exactly that by checking if
all return addresses in the LBR registers are preceded by calls. However, this approach is
limited by the finite size of the LBR of 16 entries and is only applicable to x86 processors.

Performance optimization mechanisms like return address prediction use the same
hypothesis, by saving the return address at each function call. SIGDROP [WB16] presents a
heuristic mechanism that leverages return address mispredictions and performance counters.
It builds a heuristic model based on a misprediction counter and an instruction counter
for a defined execution window. An alarm is raised when the number of mispredictions
multiplied by a gadget size threshold is higher than the number of instructions executed
in the window. While this approach is not intrusive and easy to implement, false positives
or false negatives can arise depending on the defined threshold.

HAFIX [DHP+15] proposes an alternative to the shadow stack mechanism by keeping
track of active functions. The active set is saved in memory, keeping track of procedure
calls and their corresponding return address. It requires ISA modifications: instructions
are inserted in the binary to activate and deactivate the labels. It also needs the active set
to be saved between contexts, making it as complex as a shadow stack.

Branch Target Identification (BTI) [Sip23] is an ARMv8.5 extension that protects
indirect branches and their targets, thus helping to limit control-flow abuses. With this
extension, ARM8.5-A introduces Branch Target Instructions (BTIs), also called landing
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pads. The microarchitecture is adapted so that indirect branches are only allowed to
target landing pad instructions. If the target of an indirect branch is not a landing pad,
an exception is raised. While mostly used to protect forward edges, e.g. function calls,
BTIs can also be used to protect function returns. A concrete comparison with ARM BTI
on backward edges is provided in Section 8.4.

On the RISC-V architecture specifically, several propositions were made to address
CRAs. Morpheus-II [HVW+21] is a secure processor architecture based on code and
pointers encryption. Unlike call rewinding, it tackles CRAs during the gadget search
phase by making it seemingly impossible for an attacker to assess gadgets addresses. It
also addresses side-channel attacks by renewing encryption keys at runtime. Despite its
efficiency in terms of performance and area and its wide attacks coverage, Morpheus-II
brings a significant complexity for its integration on existing platforms. FIXER [DBGJ19]
is focused on the protection of backward and forward edges. It presents a coprocessor
extension and custom instructions to enforce CFI on the platform. The new instructions
are inserted by processing the binary, marking a strong impact on the toolchain and a
significant cost in hardware resources.

An implementation close to call rewinding was mentioned in an earlier patent [PSS14].
The core of this work is to allow execution in a protected mode where the return address
pushed on the stack is the address of the call instruction instead of the address of the
following instruction, so that it can be decoded when returning from a function. Execution
is then resumed from the expected address. Their approach differs from ours in two ways.
The main one is that call rewinding only modifies the semantics of the return instruction
and does not interact with program data on the stack. Legacy applications that read data
from the stack, specifically the return address, will be affected. Additionally, call rewinding
leverages branch prediction mechanisms to enhance performance without impacting system
security, which is not mentioned nor possible with the patent’s proposed implementation.
Also, to the best of our knowledge, this idea was not carefully investigated, implemented
and evaluated.

The present work continues earlier efforts to design and evaluate countermeasures and
protection mechanisms against ROP attacks.

4 Context and Definitions

4.1 RISC-V Architecture
RISC-V is a relatively recent open-source ISA introduced in 2010 [RIS19]. It has gained a
lot of popularity in the last few years due to its modularity. It provides a mandatory set of
instructions, I for Integer instructions, and several optional extensions, each designated by
a unique letter. The most common ones are integer multiplication and division (M), atomic
operations (A), floating-point operations (F for single-precision, D for double-precision) and
compressed instructions (C). The letter G describes the general purpose ISA that embraces
IMAFD extensions. The most commonly used control-flow instructions are part of the base
set and compressed extension set.

The RISC-V ISA defines 31 general-purpose registers. Some of them have specific use
as per the ABI defined in the specification [RIS19].

The RISC-V calling convention (Table 1) defines the rules and conventions for how
functions interact in a RISC-V architecture-based system. It defines the usage of registers
for argument passing, and the handling of return values. In RISC-V, registers are designated
for specific purposes, such as a0 to a7 for argument passing and s0 to s11 for saving values
across function calls. The stack is employed for managing local variables and function call
information, with the stack pointer sp tracking its top. Return values are typically stored
in specific registers (a0 for integers), and the convention distinguishes between callee-saved
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Table 1: RISC-V first standard calling convention [RIS19].
Register ABI Name Description Saver
x0 zero Hard-wired zero –
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer –
x4 tp Thread pointer –
x5 t0 Temporary/alternate link register Caller
x6–7 t1–2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10–11 a0–1 Function arguments/return values Caller
x12–17 a2–7 Function arguments Caller
x18–27 s2–11 Saved registers Callee
x28–31 t3–6 Temporaries Caller

and caller-saved registers, specifying which registers need preservation across function
calls. The calling convention ensures compatibility and coherence in function interactions,
facilitating interoperability between different software components on RISC-V platforms.
Function calls can be performed by two instructions of the base instruction set, namely
jal and jalr.

Register x1 is commonly known as the return address register or ra. Its primary
purpose is to hold the return address of a function call. When a function is called, the
address of the instruction immediately following the call is stored in ra. This allows the
program to know where to return once the function is executed. The standard way to
return from a function call is to execute the pseudo-instruction ret that is actually a jalr
instruction with zero as destination register and ra as source register.

The compressed counterparts of jal and jalr, i.e. encoded on 16 bits, are c.jal and
c.jalr respectively. At the CPU level, these instructions are interpreted in the same way:
meaning a compressed jump and link instruction will be evaluated as a regular jump and
link.

The ra register is part of the calling convention, and it is a caller-saved register. This
means that if a function uses ra for any purpose inside the function, it should save its
original value and restore it before returning. The standard also defines t0 as an alternate
link register.

4.2 Return Address Stack
Branch prediction is a crucial unit of modern CPUs aimed at improving instruction
execution efficiency [Sto07]. Conditional branches occur when the program encounters
decision points, such as if-statements or loops, where the next instruction to execute
depends on a condition. Traditional CPUs use a pipeline architecture. If a branch
instruction is encountered, and the CPU does not know the outcome, there is a pipeline
stall as it waits for the branch condition to be resolved. The primary goal of branch
prediction is to minimize pipeline stalls by predicting the outcome of branch instructions
before they are definitively known, allowing the CPU to speculatively execute subsequent
instructions.

One of the prominent challenges in branch prediction lies in the occurrence of mispredic-
tions, where the CPU anticipates the outcome of a branch incorrectly. This miscalculation
leads to undesired consequences, primarily resulting in wasted CPU cycles spent executing
the wrong speculative instructions. Flushing the pipeline of those erroneous instructions
and refilling it causes a performance penalty. A challenge for designers is to reach a
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maximum level of accuracy on correctly predicted branches in order to limit performance
impact.

A return address stack (RAS) focuses on optimizing the execution of return instructions,
which are a special type of indirect jump. Modern processors incorporate a hardware-based
stack that stores the return addresses of function calls. Whenever a call instruction is
executed, its corresponding return address is pushed onto the stack. Subsequently, when a
return instruction enters the pipeline, the processor seamlessly retrieves the next address
by popping it off the stack, allowing the fetching of instructions from the associated address
to continue without interruption. Within a few cycles, depending on the pipeline depth,
the actual return address is computed, enabling the processor to recover from a branch
misprediction if necessary. This mechanism is popular in high performance CPUs and can
be seen in all major architectures: ARM Cortex A-53 [ARM18], Intel Core i7 6700 has an
8-entry RAS [PH17] and RISC-V CV64A6 [ZB19].

A RAS is conceptually similar to a shadow stack, in the sense that it securely stores
return addresses. However, its purpose is completely different as a RAS is only used to
optimize performance, i.e. mispredicts are tolerable and happen in legitimate applications
in the following cases:

• RAS overflows caused by recursive function calls or deeply nested function calls;

• Speculative execution of a return instruction that is fetched but on a wrongly
taken path;

• Particular software constructs like setjmp and longjmp;

• Interrupts that halt a function execution and start a specific routine;

• Context switches that interrupt a process control-flow, rendering the RAS out-
dated.

As mentioned earlier, the RISC-V specification also defines a RAS and the simplicity
of RISC-V calling convention and of its instruction set allows for a straightforward
management of it in hardware. It is accessible only with a push/pop mechanism. Only
two instructions, part of the base instruction set, can affect on the RAS:

• jal, with the jump target encoded in the instruction (i.e. direct jump);

• jalr, with the target address in its source register rs1 (i.e. indirect jump);

Table 2: Return address stack prediction hints encoded in the register operands of a jalr
instruction [RIS19]. Below, link is true when the register is either ra or t0.

rd rs1 rd=rs1 RAS action
!link !link – None
!link link – Pop
link !link – Push
link link 0 Pop, then push
link link 1 Push

Hints as to the instruction’s usage are implicitly encoded in its source and destination
registers. For jal instructions, the return address is pushed onto the RAS when its
destination register rd is either ra or t0 (see Table 1). For jalr instructions, the RISC-V
specification presents the effects on RAS as in Table 2. The link condition is true when
the register is either ra or t0. When two different link registers (ra or t0) are given as
rs1 and rd, then the RAS is both popped and pushed to support coroutines.
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5 Call Rewinding
5.1 Threat Model
We consider an attacker who seeks to exploit a software vulnerability in an application in
user mode and to hijack the control-flow of an application, in order to execute arbitrary
code. The attacker has full control of data memory once the vulnerability is exploited, and
a read-only access to the software binary and shared libraries. It is assumed that ASLR
is enabled on the platform, but the attacker is able to bypass it to obtain the required
section addresses and find ROP gadgets [JMA+20]. The platform is a chip equipped
with a RISC-V CPU, either in bare-metal or with an OS. Since code-injection attacks
are outside the scope of this work, we assume that data memory is non-executable at the
beginning of the exploit and that the attacker cannot inject a specially crafted program to
initiate the attack. Also, as the proposed mechanism only protects the return address, it
is not able to detect other CRAs such as jump-oriented programming (JOP) [BJFL11] or
sigreturn-oriented programming (SROP) [BB14] that target other registers.

5.2 Strategy
Return-oriented programming attacks exploit the return address to link gadgets together.
They exploit return instructions to jump from one gadget to the next. Gadgets are carefully
chosen when crafting the chain to achieve a malicious goal and in most ROP exploits,
gadgets entry points are at arbitrary locations in the binary. Hence the return instructions
jump to invalid addresses. From the CFG point of view, this is equivalent to invalid
backward edges.

In applications following the standard convention, all procedures or functions are
executed in a similar way using call and return instructions. As seen in Section 4.1, call
instructions jal and jalr store the return address in register x1 (or the alternate link
register x5). Since it is a caller-saver register, its value is also stored on the stack if
needed to keep the linking information of nested functions. Call rewinding is based on
the fact that all return addresses popped from the stack and loaded into x1 must, when a
ret instruction is executed, point to an instruction’s address directly preceded by a call
instruction.

Concretely, the proposed countermeasure against ROP attacks is to fetch the instruction
at the address preceding the computed return address. The consequence is that one
additional cycle is required before resuming execution at ra. The following actions are
performed at the microarchitectural level when a call is rewinded:

t0: The return instruction is executed as a jump register instruction with ra as source
register, but instead of just fetching the instruction at ra, the CPU first fetches the
instruction at address ra minus 4, called the rewinded address rwa;

t1: The fetched instruction is scanned to determine its nature and then discarded;

t2: Based on the scan result, execution resumes normally at ra or an exception is raised
if the instruction at rwa is not a call.

Instruction scanning is a useful mechanism for CPUs that support branch prediction:
instructions are predecoded early in the pipeline. When a control-flow instruction is
detected by scanning, branch prediction modules are updated accordingly. Then, based on
the encoded hints of the jalr and jal instructions, instruction scan is able to determine
whether the fetched instruction is a call or not. At the fetch stage, a small module called
rewind is added to handle the rewinded call. It registers the rewinded address rwa to
know when to expect a call and receives information from instruction scanning to know
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Figure 3: A standard 5-stage CPU architecture with call rewinding modifications shown
in red. Only modifications in the branch unit of the execution stage to compute rwa and a
special rewind module to handle it in the instruction fetch stage are required. There is no
return address prediction and rwa is always jumped on.

the nature of the instruction. If it is indeed a call, execution resumes normally at address
ra. If not, a custom exception INVALID_RETURN_ADDRESS with code 25 is raised by the
rewind module. The default behavior is to stop the execution in bare-metal. In an OS
environment, further actions towards the faulty application could be taken.

The crucial aspect of call rewinding is to identify the instruction fetched at rwa so that
it does not go further in the pipeline. If not done correctly, the rewinded instruction will
be decoded, executed and committed to the pipeline. This would have irreversible effects
on a legitimate application as it would call and return from a function endlessly. Rewinded
instructions are flushed from the fetch stage when identified.

Call rewinding is a microarchitectural modification only, i.e. it requires no binary
processing. The pipeline modifications shown on Figure 3 are the only required CPU
adjustments to protect a system against most ROP exploits. In the case of a platform with
an OS, it must support the custom exception with a specific handler. This is addressed in
Section 6.3.

While the presented approach is lightweight and does not impact performance drastically,
it can be enhanced. ROP attacks have another low-level property that is true for all
exploits. Indeed, linking gadgets with return instructions will trigger branch prediction
mechanisms and pop addresses from the RAS. Yet these addresses were not pushed by a
past procedure call and all gadgets will have mispredicted addresses. Correctly predicted
return addresses on the other hand are deemed secure since the RAS is accessible by
hardware only. Hence, call rewinding can benefit from branch prediction mechanisms
aimed at optimizing return instructions. In the case where the CPU correctly predicted
ra, then there is no need to fetch the instruction at rwa; integrity of the return address
is insured by the fact it was pushed in the RAS. This approach has a positive impact
on performance without degrading the security brought by call rewinding. The pipeline
optimized with a RAS is shown in Figure 4. Mispredictions can still arise due to causes
mentioned earlier, and then need to be checked.
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Figure 4: A standard 5-stage CPU architecture enhanced with call rewinding supporting
return address prediction. Call rewinding modifications are shown in red. Here, rwa is
computed only in the case of a mispredicted return address.

6 Implementation Details

6.1 CV64A6 Integration
The target we have chosen to experiment with call rewinding is the CV64A6 [ZB19]. The
CV64A6 is an open-source RISC-V application core. It has a 6-stage pipeline and is a
single issue in order 64-bit CPU. It has a wide support for branch prediction: both static
and dynamic prediction are used as well as a return address stack. It supports the IMAFC
extensions. It was chosen for its support of Linux, so that tests could be done in bare-metal
and in an OS environment.

As defined in Section 5, the study delved into modifications within the fetch pipeline
and branch unit of the CV64A6. These units can be seen in Figure 5 in the frontend and
the execute stage. The modifications are as shown in Figure 4 since there is a RAS in the
processor core. The CV64A6 has a lot of configurations based on hardware parameters.
The RAS depth depends on the value of RASDepth. It corresponds to the number of
available stack entries and must be different from 0 for the RAS to be instantiated. The
predicted return address is hardwired to 0 in case it is not part of the design, meaning
all return instructions will be mispredicted. We added a CallRwEn boolean parameter to
enable or disable the call rewinding feature.

6.2 Compressed Instructions Support
The CV64A6, in its default configuration, supports the C extension. When executing
a compressed instruction, the program counter (PC) is incremented by 2. In case of
a compressed call instruction, the saved return address is then the current PC value
incremented by 2 (instead of 4). Since the information regarding the size (16 or 32 bits)
of the call instruction is unknown when executing a return, the choice is made to always
compute rwa as being ra minus 4. This means that the instruction at address rwa + 2
must also be checked by the rewind module. The alignment of the instruction’s address
does not impact the mechanism. In the base instruction set, the jal and jalr instructions
must target an address aligned to a four-byte boundary. However they can target addresses
aligned to a two-byte boundary if the platform supports the compressed instruction set
extension.
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Figure 5: Overview of the CV64A6 architecture (block diagram from https://github.
com/openhwgroup/cva6).

To comply with the C extension, the CPU must scan the instruction it receives from
memory in 16-bit chunks. It can then identify compressed instructions. This means that
there are four possibilities when scanning data received from the instruction bus, depicted
in Figure 3. A compressed call instruction at address rwa + 2 is valid (Figure 3b), however
one at address rwa is considered invalid (Figure 3c). In legitimate applications, the return
address cannot be four bytes away from its original compressed call site. In this case, an
exception is reported. Additional logic is required to make sure the instruction at rwa +
2 is correctly identified.

It has been shown that using compressed instructions can also increase the attack sur-
face [JMA+20]. Overlapping instructions can form “unintended calls” or other instructions
depending on their operands. Call rewinding is not affected by this as gadgets starting
with an unintended call are considered invalid: the compressed call instruction will be seen
on address rwa as on Figure 3c. When only using 32-bit instructions, there is no corner
case, the instruction at rwa is either a call (Figure 3a) or not (Figure 3d).

6.3 Linux Support
Call rewinding is based on the hypothesis that applications respect the ABI. Running an
OS with a strict security policy enforced in hardware can unveil false positives. To validate
the approach, we run a minimal image of Linux 5.10-7 built using the Yocto layers for
the CV64A62. In order to run an OS the CPU must have support for supervisor-mode
(S-mode), as is the case of the CV64A6. There is no guarantee that the OS respects the

2https://github.com/openhwgroup/meta-cva6-yocto

https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/meta-cva6-yocto
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Table 3: Example of valid (a and b) and invalid (c and d) scenarios of instructions fetched
at rwa.

rwa rwa + 2

01110010 11000000 00010000 11101111
72 c0 10 ef

jal 25608

(a) Valid: 32-bit call instruction at rwa.

rwa rwa + 2

10010001 00010010 10011011 10000010
91 12 9b 82
c.add sp, tp c.jalr s7

(b) Valid: 16-bit call instruction at rwa + 2.

rwa rwa + 2

10011010 00000010 01100111 00001101
9a 02 67 0d

c.jalr s4 c.lui a4, 0x3

(c) Invalid: 16-bit call instruction at rwa.

rwa rwa + 2

00000000 00100110 10000111 10010011
00 26 87 93

addi a5,a3,2

(d) Invalid: non-call 32-bit instruction at rwa.

ABI when executing in-kernel operations. It might use ra in a way that is not specified by
the ABI and trigger a call rewinding exception. Indeed, we found false positives within the
boot sequence of Linux in S-mode. Since compromising of binaries used during the boot is
an issue which must be addressed by secure boot and not by CFI methods, we deactivated
call rewinding in S-mode. It is activated in user-mode (U-mode), for user applications,
where lies the actual attack surface, as well as in machine-mode (M-mode), for bare-metal
systems.

In U-mode, we discovered one false positive when returning from a signal handler, the
sigreturn syscall. Its location would be written in ra and jumped on at the end of each
handled signal, raising an exception as this construct does not respect the ABI. To solve
this issue we wrote a handler for our custom exception INVALID_RETURN_ADDRESS that
prevents the running application from crashing in case ra points to the sigreturn syscall.
This solution is palliative to a programming issue. This does not weaken the protection
against ROP exploits as shown in Section 7.1. SROP [BB14] exploits are still possible
with call rewinding enforced, however vulnerability to SROP attacks is not increased.

7 Experimental Results
Our evaluations cover the following Research Questions (RQ):

RQ1 How effective is call rewinding in detecting illegal return addresses, and to what
extent does it mitigate ROP exploits?

RQ2 What is the impact of implementing call rewinding on CPU performance, specifically
in terms of computational overhead?

RQ3 How does call rewinding affect the utilization of hardware resources?

7.1 Security Evaluation
Experimental setting. RQ1 evaluates the actual security provided by call rewinding to a
system, focusing on its ability to protect against ROP and return-to-libc attacks, which
rely on return address overwrites. To validate our implementation of call rewinding, we
ran 25 randomly generated ROP attacks using a RISC-V ROP generator3 in a bare-metal

3https://gepgitlab.laas.fr/matana/bench/rop-generator

https://gepgitlab.laas.fr/matana/bench/rop-generator
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environment and in a Linux environment. The exploited vulnerability was an unchecked
memcopy function. The attacks set up argument registers and perform a system call
to execute a specific command. Additionally, a ROP chain was crafted to validate call
rewinding against a realistic payload.

We also tested call rewinding in a more robust environment using the RIPE [MT18]
benchmark, with Linux running on the CV64A6. This benchmark performs various types
of buffer overflow attacks, but we focused on those that exploit the return address on the
stack. The test was conducted on the Digilent Genesys 2 FPGA board, with the RIPE
benchmark compiled with an executable stack and no stack protection.

Finally, a relevant metric is to evaluate the number of remaining gadgets available for
attackers to build ROP attacks. To find gadgets, we use RaccoonV, a static binary analysis
tool presented in [BGPK24]. This tool is able to extract both ROP and JOP gadgets from
RISC-V binaries. We extended it to indicate call-preceded gadgets as well, as they are the
only allowed gadgets with call rewinding. To observe the effectiveness of call rewinding
against ROP exploits, we compare the number of ROP gadgets and call-preceded gadgets
found in binaries.

Results. In the bare-metal environment, the CPU detected the invalid return address on
the first gadget of the chain for each of the 25 tested ROP attacks. The crafted ROP chain
also triggered an error on the first return instruction with an invalid address, demonstrating
call rewinding’s effectiveness in detecting and halting these attacks.

The RIPE benchmark provided a comprehensive evaluation, compiling 180 attacks
ported to the RISC-V architecture, with 11 using the return address (ra) as the abused
pointer. All these attacks targeting the return address raised an exception at runtime,
successfully halting the corrupted application. This confirmed the robustness of call
rewinding in a more complex environment.

Although call rewinding effectively mitigates common ROP attacks and basic buffer
overflow attempts, it has limitations. Notably, in scenarios where a smart attacker
overwrites ra through a buffer overflow, they may redirect it to an address following a call
instruction within a code injection context. Consequently, while call rewinding provides
valuable protection, it does not comprehensively address all potential attack vectors. Side-
channel attacks that target the RAS [KKSAG18] are still possible: call rewinding is not
suitable to detect such attacks. However, trusting the RAS predictions even in such cases
does not actually decrease the security of call rewinding, since it can only contain addresses
of valid call sites. Even if the prediction is a leftover of a speculatively executed call, call
rewinding would not detect it as malicious even if the check was performed. Hence it
does not diminish the base security brought by call rewinding to leverage the RAS for
performance.

In a CRA context, it successfully detects illegal return addresses but it does not detect
call-preceded gadgets [CW14]. The number of available gadgets is directly correlated to
the ability for an attacker to build a gadget chain. Table 4 summarizes the effective
reduction of exploitable gadgets on popular libraries, for gadgets of up to ten instructions.
Call rewinding still offers a very valuable gadget reduction, only leaving a small set of
exploitable gadgets in studied libraries. On average, gadget reduction is superior to 99%.

Observing the number of remaining gadget is a common approach to evaluate counter-
measures that enforce CFI properties [ZS13, DZL16, HDZL17]. Moreover, the remaining
gadgets have an average size of 5 instructions, meaning that they do several operations.
They then have a higher number of side effects [KSN+13], making them harder to use.
Also, our study of the remaining gadgets in each libraries showed that they have limited
capacities: they do not allow attackers to have system calls as part of their gadget chains,
thus limiting the possible attacks to memory corruption, which are harder to set up with
call rewinding.



Téo Biton et al. 241

Table 4: Number of available gadgets in relevant libraries compiled for RISC-V 64-bit.
Binary ROP gadgets Call-preceded gadgets Effective reduction
libc 7,525 101 98.6%

libbluetooth 7,170 6 99.9%
libcrypto 17,733 138 99.2%
libgnutls 4,810 134 97.2%
libsqlite3 3,501 41 98.8%
libssl 3,132 20 99.4%

Table 5: CoreMarks/MHz score for the CV64A6 depending on relevant hardware parame-
ters.

Configuration RASDepth CallRwEn CoreMarks/MHz % performance

Default 2 0 2.40 -
2 1 2.39 -0.41%

No RAS 0 0 2.36 -
0 1 2.35 -0.42%

Conclusion. Call rewinding effectively detects illegal overwrites of the return address in
basic buffer overflow exploits and in the context of a ROP attack. While some gadgets are
still available to attackers in our experiments, they provide a reduced set of operations and
do not allow calls to kernel operations. Overall, call rewinding offers substantial security
benefits by significantly reducing the number of exploitable ROP gadgets, although it does
not address all potential attack vectors.

7.2 Performance Analysis
Experimental setting. The core concept of call rewinding is to execute return instructions
by jumping to the preceding instruction to perform a security check. Although this
instruction is not executed, fetching it costs at least one additional cycle, impacting CPU
performance. To answer RQ2, we modified the CV64A6 processor with call rewinding in its
default configuration and without return address prediction. Performance was measured
by running CoreMark [GOL12]. Additionally, UCB’s RISC-V benchmark4 suite was used
to provide insights into common applications. The main metric studied is the total number
of CPU cycles used to execute applications.

Results. The CV64A6 showed reduced performance with call rewinding enabled, as
expected. However, the performance gap is minimal, with only a 0.4% decrease in
CoreMark score compared to the nominal score. The CoreMark scores are presented in
Table 5.

To gain a broader perspective on the impact of call rewinding on common applications,
we ran the UCB’s RISC-V benchmark suite on the default CV64A6 with call rewinding
both enabled and disabled. The metric studied was the total number of CPU cycles used to
execute the applications. The overhead percentage, representing performance degradation,
was calculated as the absolute difference between the two sets of clock cycle counts.

The overall execution time overhead induced by call rewinding was always less than
0.9%, with an average overhead of 0.1% based on the benchmarks run. These results are
detailed in Table 6.

Conclusion. The integration of call rewinding into the CV64A6 processor introduces a
minimal performance overhead. The slight performance degradation observed in both

4https://github.com/ucb-bar/riscv-benchmarks

https://github.com/ucb-bar/riscv-benchmarks
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Table 6: Evaluation of number of CPU clock cycles used by benchmark applications.
Benchmark Default CV64A6 Default CV64A6 + CallRwEn Performance Overhead
coremark 874,527 874,837 0.03%
dhrystone 223,550 224,072 0.23%
median 12,778 12,788 0.08%
mm 317,657 317,690 0.01%

mt-matmul 40,159 40,159 0.00%
mt-vvadd 55,036 55,048 0.02%
multiply 36,983 36,995 0.03%
qsort 224,724 224,733 0.00%
rsort 192,095 192,103 0.00%
spmv 59,829 59,840 0.02%
towers 13,341 13,457 0.86%
Average - - 0.12%

CoreMark and the RISC-V benchmark suite underscores that call rewinding’s impact is
negligible in practical scenarios. While the performance loss due to call rewinding is minor,
it can be further optimized using a return address stack (RAS) without compromising the
security mechanism. Profiling the system and adjusting the number of RAS entries can
further mitigate any performance costs associated with call rewinding, ensuring efficient
and secure processor operation. Increasing the number of RAS entries could improve
performance, but the extent of improvement is highly dependent on the application.

7.3 Hardware Resources Utilization
Experimental setting. To answer RQ3, call rewinding is integrated in the CV64A6 and
we measured its impact on hardware resources in a FPGA context. Synthesis for the
Digilent Genesys 2 FPGA board was done using Vivado 2020.1. Since the implementation is
adapted to other parameters of the CV64A6, we present results for different configurations.

Results. With the CV64A6 in its default configuration, lookup tables (LUTs) count
increases by 0.25% and flip-flops (FFs) count increases by 0.18%. The synthesis results
showing absolute values are presented in Table 7. Other configurations have been studied
to show the raw complexity introduced by call rewinding. In case of no support for return
address prediction (RASDepth = 0), the LUTs and FFs overhead is respectively of 0.06%
and 0.17%. As described in Section 6.2, support for the C extension is responsible for
most combinational resources required by call rewinding. With the CV64A6 synthesized
with no support for compressed instructions, the LUTs count increases by 0.18% and FFs
count increases by 0.18%.

Table 7: CV64A6 hardware resources utilization on Digilent Genesys 2 FPGA board in
its default configuration and with call rewinding enabled.

Configuration LUTs count FFs count
Default CV64A6 72,491 - 46,589 -
Default CV64A6 + CallRwEn 72,674 +0.25% 46,673 +0.18%

Conclusion. In the three configurations studied, the impact of call rewinding on hardware
resources is negligible. The integration of call rewinding in the pipeline does not cause
timing issues (i.e. reduce processor frequency) as the added logic is rather simple and not
on the critical path of the CV64A6 design.
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8 Discussion
8.1 Software Constructs
One strength of call rewinding is that it is built in respect to the calling convention,
that dictates how software should use the general-purpose registers. The circumstances
triggering return instructions to jump on the rewinded address rwa exist in legitimate
applications. However, errors on invalid return addresses should only be raised in the
context of a malicious exploit, specifically in a ROP context. Certain software constructs
or events that can be seen in an OS environment could disrupt the expected behavior. We
propose a discussion on the main ones we have identified.

Context switches. A context switch is a process by which the OS temporarily interrupts
the execution of one thread, saving its current state and allowing another thread to resume
execution. This operation is vital for multithreading environments, where multiple threads
share a single CPU, and it ensures that each thread can continue without interference
from the others. Before switching to a new thread, the OS saves the current context of
the executing thread. This includes the values of processor registers (x1 to x31), the PC,
and other relevant information that defines the state of the thread. When a new thread is
selected, its stored context is loaded into the processor. The processor resumes execution
from the point where the selected thread was previously interrupted. The thread continues
to execute as if there had been no interruption.

This is completely transparent to the CPU: it is just a sequence of store instructions
followed by a sequence of load instructions. The RAS is completely unaware of these
changes and will contain return addresses from the previous thread, i.e. it is not part of
the information saved during a context switch. This will cause return mispredicts and
jumps on rwa to perform the security check. However, the return address stored during
the context switch should be valid because it comes from previous function calls, so there
is no security issue during context switching.

Interrupts and exceptions. Interrupts are asynchronous events that can occur at any
point during execution. They are mainly raised by system peripherals or by the debug
module. Exceptions, on the other hand, are synchronous events raised when an attempt is
made to execute an undefined instruction. For example, an illegal instruction exception is
raised when the CPU is unable to decode an instruction. In the RISC-V architecture, when
an exception or interrupt occurs, the virtual address of the current instruction is stored so
that it can be executed on return from the trap routine. In a CPU with a pipeline stage
such as the CV64A6, the stored PC corresponds to the instruction in the last stage of the
processor (commit or writeback stage). The other stages of the pipeline are flushed to
start the trap routine.

If an interrupt or exception occurs while fetching from the rewinded address rwa,
the check may be interrupted. In this case, the rewind module must also be flushed:
since execution restarts from the return instruction, the check will still be performed.
An attacker cannot bypass the exception by triggering a software interrupt, because the
INVALID_RETURN_ADDRESS exception has the highest priority. By flushing the rewinded
address and ensuring that execution resumes from the return instruction, this type of
abuse is mitigated.

setjmp and longjmp. These functions are specific to the C programming language and
provide a mechanism for non-local jumps, allowing a program to jump back to a saved
execution state from another point in the code. They are typically used to implement
exception handling or to deal with complex control-flow scenarios.
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The setjmp function is used to save the current execution state, including register
values and the PC, in a jmp_buf data structure. In RISC-V, the return address is part of
the saved data.

The longjmp function is used to jump back to a previously set checkpoint. It restores
the saved execution state (stored in the jmp_buf) and continues execution from that
point. The return address ra is then overwritten when the execution state is restored: it
becomes the return address of the setjmp function. Since ra is overwritten with a return
address preceded by a call, call rewinding will not raise an exception due to this construct.
Experimentation with a small application has confirmed that ra is saved by the setjmp
function and that no false positives are triggered by this software construct.

8.2 Supporting other conventions
Call rewinding enhances the detection of invalid return addresses, but it is only effective for
code that adheres to the calling convention. Software that deviates from this convention
will not function correctly on CPUs that implement call rewinding, as any alternative use
of the register ra would trigger exceptions. The false positive discussed in Section 6.3 is an
example of this issue. To support code that does not strictly follow the calling convention,
we propose two solutions:

• Extend the exception handler: Adapt the exception handler to manage false
positives specific to an application. This involves identifying potential false positive
addresses in the binary and providing this information to the exception handler.
However, if these addresses are frequently encountered during execution, this approach
may degrade performance due to the interruptions caused by each false positive.

• Control call rewinding via a Control and Status Register (CSR): Allow the
operating system to enable or disable call rewinding before starting an application.
This method requires ensuring that code running in user mode (U-mode) cannot
alter this setting, thus maintaining system integrity.

These considerations apply to hardware shadow stacks as well, especially the RISC-V
extension that only supports ra and the alternate link register t0 as valid registers for the
return address [SS-23].

8.3 Comparison with Shadow Stacks
Shadow stacks are the most common countermeasure to protect backward edges, however
their implementation in systems is complex. Software approaches have an overhead of
around 10% for traditional designs, and of 3.5% for a parallel design [DMW15]. Hard-
ware approaches, on the other hand, have a significantly lower performance overhead:
HAFIX [DHP+15] indicates an average overhead of around 2% while FIXER [DBGJ19]
indicates one of approximately 1.5%. Shadow stack designs studied in [BZP19] show per-
formance overheads varying from 1% to 50% on certain applications. Table 8 summarizes
the overheads based on performance and code size for a sample of shadow stack schemes.
However, other issues are raised by the utilization of shadow stacks. A shadow stack is
specific to a particular thread, which means that in multithreading contexts, multiple
shadow stacks must coexist. This has an performance implications when switching threads:
information about the shadow stack associated with the current thread must be saved
somewhere. This also has an increasing impact on memory as multiple pages must be
allocated to store the shadow stacks. The setjmp/longjmp constructs often needs a special
handling as information on the shadow stack must be part of the saved context. Finally,
hardware implementations of shadow stacks often add custom instructions that have an
impact on the ISA, hardware resources and on code size.
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Table 8: Comparison of performance overhead between call rewinding and different
implementations of shadow stacks.

Implementation Average performance overhead
Call rewinding 0.12%

FIXER [DBGJ19] 1.5%
HAFIX [DHP+15] 2%

Parallel software design [DMW15] 3.5%
Traditional software design [DMW15] 10%

We argue that call rewinding is easier to integrate into CPUs and in the overall platform
than a shadow stack with only a slight decrease of security (quantitatively, approximately
2% of remaining gadgets as shown in Section 7.1). Code size is not impacted at all by call
rewinding, since the detection of illegal return addresses is done solely using hardware
mechanisms. In terms of hardware resources, call rewinding requires very few LUTs (183
in absolute value) and very low additional registers as only the current return address is
saved during the check sequence. Smashguard [OVB+06] requires an additional memory
bank of 1 KB to store the shadow stack, as expected to match the requirement of storing
many addresses. Relative overheads are given by HAFIX (1.0% LUTs, 2.49% FFs) and
FIXER (2.9% area), but it should be noted that the hardware platforms are different. Call
rewinding also causes a strictly lower average performance overhead than HAFIX, FIXER
and software shadow stacks implementations presented in [DMW15]. It should be taken
into consideration that hardware resources usage and performance results presented in
other papers were obtained on different architectures, using specific tools and benchmarks.
An undeniable comparison would be with a hardware shadow stack implemented on the
same architecture and synthesized with the same tools or with a software shadow stack
tested on the same platform. We are confident about the really low impact on area and
performance of our solution and that it is competitive with the state of the art in these
regards.

8.4 Comparison with Landing Pads
Landing pads are special instructions inserted to validate the target of an indirect jump.
While their most common use is to protect forward edges, as is the case of the RISC-V
landing pad extension, these instructions can also be used for backward edges. ARM
BTI [Sip23], mentioned in Section 3, provides this functionality. Call rewinding is as secure
as a landing pad implementation on backward edges: remaining gadgets would have to
be preceded by a landing pad instruction. Introducing labels in the landing pads allows
for a more fine-grained protection, as done by RISC-V landing pad extension for forward
edges [SS-23]. We implemented a landing pad scheme similar to ARM BTI on the CV64A6
and compared it to call rewinding based on three metrics: performance (CPU cycles),
hardware resources and code size. The performance and code size comparison is based on
UCB’s RISC-V benchmark, as was done in experimentations presented in Section 7.2. The
overheads are evaluated compared to the baseline of CV64A6. The results are presented
in Table 9.

Table 9: Comparison of performance overhead, hardware resources utilization and code size
overhead between call rewinding and an implementation of landing pads on the CV64A6.

Metric Call rewinding Landing pads
LUTs 0.3% 1%
FFs 0.18% 0.4%

Performance 0.12% 0.65%
Code size – 0.85%

The main advantage of call rewinding is its seamless integration into the execution flow,
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i.e. it does not need additional instructions to perform security checks. It uses the hints
directly encoded in call instructions. Hence the code size shows no increase compared to
landing pads, and call rewinding can be used with legacy applications. The landing pad
implementation roughly has 1% LUTs and 0.4% FFs overhead, mainly due to the logic
required to save the information that a landing pad is expected, to support execution of
exception routines. Also, as call rewinding uses branch prediction on return instructions,
performance is less impacted. It proves to be a strong alternative to landing pads on
backward edges.

9 Threats to Validity
Threats to external validity relate to the sample of applications used to test call rewinding.
The benchmarks run on the platform in a bare-metal environment did not cause any false
positives, but there is no guarantee that all legitimate applications can run properly, as
discussed in Section 8.2. Because call rewinding closes the gap between ISA and standard
call conventions, it makes platforms more restrictive regarding authorized manipulation
of the return address. We mitigated this risk by stress testing our solution in a Linux
operating system environment, where we encountered only one false positive in user mode.
Also, as mentioned in Section 7.1, there is a need for more appropriate metrics to measure
the effectiveness of reducing the number of available gadgets.

10 Conclusion
Since the introduction of ROP attacks, numerous countermeasures have been proposed to
safeguard the integrity of backward edges. Approaches such as shadow stacks, have been
explored, with the major pain points being performance overhead, interrupt and context
switch management, and a broader impact on development workflows.

Call rewinding emerges as a microarchitectural defense seamlessly integrated into the
processor’s pipeline. Its distinctive feature lies in its transparency to software developers,
requiring no modifications to the toolchain. It is a purely hardware solution requiring
no binary analysis or rewriting. Since it restricts the return instruction, the ISA is
slightly modified: most standard applications are not impacted, however applications
that do not respect the calling convention must be able to handle false positives. The
only discernible effects are on area and performance, with the implementation in CV64A6
revealing hardware resources utilization overhead of less than 0.3% and a mean performance
overhead of less than 0.1%. The core concept of call rewinding is moreover applicable to
other architectures, e.g. ARM and x86.

While it is acknowledged that call rewinding does not address all ROP exploits, it
provides a strong level of security, particularly beneficial for embedded systems that cannot
afford the expense of fine-grained CFI. Our results demonstrate a significant reduction in
the number of available ROP gadgets within a binary, leaving only call-preceded gadgets
susceptible to exploitation. A method to evaluate the effective exploitability of this
remaining set of gadgets could further support this reasoning. Furthermore, we argue that
integrating it into CPUs is straightforward and easily configurable. It proves its utility by
maintaining effectiveness across a wide range of scenarios, demonstrating equal security in
both bare-metal environments and on top of an OS. The OS should be extended to handle
the custom exception and potential false positives. The appropriate action taken by this
custom handler is totally dependent on the operational context. We are convinced that
it presents a promising alternative to shadow stacks in system architectures, depending
on their available resources and security requirements. Other CRAs that do not corrupt
the return address, like jump-oriented programming (JOP) or call-oriented programming
(COP) still need to be addressed.
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