
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 203–226. DOI:10.46586/tches.v2025.i1.203-226

FalconSign: An Efficient and High-Throughput
Hardware Architecture for Falcon Signature

Generation
Yi Ouyang1,+, Yihong Zhu1,+, Wenping Zhu1, Bohan Yang1, Zirui Zhang1,
Hanning Wang1, Qichao Tao1, Min Zhu2, Shaojun Wei1 and Leibo Liu1,∗

1 Beijing National Research Center for Information Science and Technology (BNRist), School of
Integrated Circuits, Tsinghua University, Beijing, China.

2 Wuxi Micro Innovation Integrated Circuit Design Co., Ltd., Wuxi, China.
{oyy,bohanyang,wanghn,wsj,liulb}@tsinghua.edu.cn;{zhuyihong,zhuwp,qichaotao}@mail.

tsinghua.edu.cn;zhangzir20@tsinghua.org.cn;zhumin@mucse.com
+ These authors contributed equally to this work.

* Corresponding Author.

Abstract. Falcon is a lattice-based quantum-resistant digital signature scheme
renowned for its high signature generation/verification speed and compact signa-
ture size. The scheme has been selected to be drafted in the third round of the
post-quantum cryptography (PQC) standardization process due to its unique at-
tributes and robust security features. Despite its strengths, there has been a lack
of research on hardware acceleration, primarily due to its complex calculation flow
and floating-point operations, which hinders its widespread adoption. To address
this issue, we propose FalconSign, a high-performance, configurable crypto-processor
designed to accelerate Falcon signature generation on FPGA/ASIC through algorithm-
hardware co-design. Our approach involves a new scheduling flow and architecture
for Fast-Fourier Sampling to enhance computing unit reuse and reduce processing
time. Additionally, we introduce several optimized modules, including configurable
randomness generation units, parallel floating-point processing units, and an opti-
mized SamplerZ module, to improve execution efficiency. Furthermore, this paper
presents a finely optimized hardware accelerator for the Falcon scheme. Our FPGA
implementation results demonstrate a throughput improvement of approximately
5.1 × compared to state-of-the-art designs, with 2.8×/4.5×/4.2×/3.2× fewer in
the area (LUTs/FFs/DSPs/BRAMs)-time product, for NIST security level V. The
crypto-processor occupies an area of 0.71 mm2 and achieves 5.2k OPS at throughput
on the TSMC 28nm process for NIST security level I.
Keywords: Post-quantum cryptography · Falcon · Lattice · Fast-Fourier Sampling
· Floating-point · High-performance · Configurable · FPGA

1 Introduction
In recent years, post-quantum cryptography (PQC) has garnered significant attention from
both academia and industry. The development of quantum algorithms, such as Shor’s
[Sho94] and Grover’s [Gro96] algorithms, has theoretically demonstrated the significant
advantages of quantum computers in breaking traditional public-key cryptosystems like
RSA and ECC. Recently, quantum computing has made considerable progress. For instance,
in 2022, IBM unveiled its Osprey quantum computer, which boasts 433 qubits [PJSO24].
As a result of such advancements, it is widely believed that public-key cryptosystems will
face severe security threats in the next 10 to 15 years [oST15]. To address this threat, the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.203-226
mailto:oyy@tsinghua.edu.cn,bohanyang@tsinghua.edu.cn,wanghn@tsinghua.edu.cn,wsj@tsinghua.edu.cn,liulb@tsinghua.edu.cn,zhuyihong@mail.tsinghua.edu.cn,zhuwp@mail.tsinghua.edu.cn,qichaotao@mail.tsinghua.edu.cn,zhangzir20@tsinghua.org.cn,zhumin@mucse.com
mailto:oyy@tsinghua.edu.cn,bohanyang@tsinghua.edu.cn,wanghn@tsinghua.edu.cn,wsj@tsinghua.edu.cn,liulb@tsinghua.edu.cn,zhuyihong@mail.tsinghua.edu.cn,zhuwp@mail.tsinghua.edu.cn,qichaotao@mail.tsinghua.edu.cn,zhangzir20@tsinghua.org.cn,zhumin@mucse.com
http://creativecommons.org/licenses/by/4.0/

204 FalconSign

National Institute of Standards and Technology (NIST) initiated the PQC (post-quantum
cryptography) project in 2016 to standardize PQC algorithms. In April 2022, NIST
announced four PQC finalists: CRYSTALS-Dilithium [LDK+20], SPHINCS+ [BHK+19],
Falcon [PFH+20], and Kyber [BDK+18]. Among these, Kyber is a key encapsulation
algorithm, while the remaining three are digital signature algorithms. Following the
establishment of these initial standards, NIST and the industry have been actively deploying
and testing these four PQC algorithms.

Among these PQC schemes, Falcon stands out for its compact signature size, and quick
verification process. Compared to the mainstream scheme, Dilithium, Falcon’s verification
speed and compact signature size are better, while its signature generation speed is
slightly lower. This excellent performance makes Falcon irreplaceable in the post-quantum
cryptography standardization process, particularly for time-sensitive applications like TLS
(transport layer security) certificates [SKD20]. [TBRM22] stated that Falcon is the only
viable scheme in the true hybrid design and vehicle-to-vehicle communication scenario.
The latency and throughput of signature generation are crucial in various application
scenarios, which include vehicle networking, settlement systems, and web servers. However,
there is a lack of research on the performance boundary of Falcon signature generation,
hindering its standardization and future application.

In fact, Falcon’s signature generation process is more complex than its signature
verification process, involving an intricate calculation flow and complex sampling operations.
The recursive functions in Falcon constitute tree-like calculation-flow structures, adding
to the complexity of hardware implementation. Furthermore, the utilization of double-
precision floating-point operations sets Falcon apart from other PQC algorithms, which
usually rely on integer computations. This unique characteristic introduces challenges
regarding computational efficiency and resource utilization, as floating-point calculations
typically require more time and storage. Collectively, these factors make implementing
Falcon in hardware a challenging task. Consequently, there is a need to address the
challenges mentioned above by optimizing floating-point computations, managing complex
control flow structures, and efficiently utilizing hardware resources to ensure a balance
between performance and hardware constraints.

Related Works. Karabulut et al. [KA24] proposed a discrete Gaussian sampler with
a hardware/software co-design approach to improve sampler speed. On the Zynq-7000 SoC
platform, this approach achieved a 9.83× improvement in sampling operations and a 2.7×
overall improvement in the signature scheme compared to a software solution. However,
they only designed a multi-stage pipelined multiplier with inputs of 73-bit and 69-bit
signed operands to accelerate the multiplication and subtraction operations in sampling,
without addressing the floating-point calculation bottlenecks outside of sampling. Lee et
al. [LYN+24] also reported a hardware-software co-design implementation, reducing the
cycle amount by 3.58× from the pure software implementation. The hardware platform
used in their work was based on the 28 nm Samsung process, allowing only synthesis
and place-and-route results. Yu et al. [YSZ+24] proposed a RISC-V scalar-vector custom
extension for Falcon. The sampling module of this architecture does not operate at a
high frequency, reaching only 83MHz. Additionally, it does not address the floating-
point calculation bottlenecks outside of sampling. A recent study [SAW+23] utilized a
HLS(high-level synthesis) based approach to directly map official codes to hardware design,
without considering further optimizations of hardware architecture. However, the signature
generation throughput is limited due to the lack of fine-grained optimizations, which limits
exploration of the performance boundary of Falcon scheme.

Our Contributions. In this paper, we present an efficient and high-throughput
hardware architecture for Falcon signature generation, and we will release the source
code on https://github.com/YiOuyang1/FalconSign. In general, our contributions are
summarized as follows:

https://github.com/YiOuyang1/FalconSign

Yi Ouyang et al. 205

1. A novel scheduling flow and architecture for ffSampling is proposed, which involves a
dedicated State-Transition-Based mechanism. The data flow in ffSampling process
is analyzed, and a compact control mechanism of the data flow within the tree
structure is adopted to address Falcon’s complex and recursive control overheads.
This approach allows for dynamic updating of the tasks, resulting in minimal control
overheads.

2. A compact and configurable FPU (Floating-point Processing Unit) is proposed.
A memory-centric vectorized architecture and corresponding parallel algorithms
for FFT/IFFT are selected due to their adaptability to the Falcon scheme. The
principle of this structure and algorithm are demonstrated for the first time in this
paper. Additionally, a conversion relation and parallel algorithm is provided between
splitfft/mergefft operations and FFT/IFFT operations, which can reuse the
same parallel architecture.

3. A pipelined module for the Gaussian sampler and other optimized modules are
meticulously designed. We observe that adjacent discrete Gaussian samplings in
Falcon use the same standard deviation, and thus part of the sampling computation
time can be hidden. With careful pipeline design and an efficient random number
generator, we maximized the parallelism of the SamplerZ circuit, achieving the lowest
sampling latency known to date.

4. Besides the contributions listed above, several design trade-offs and optimizations are
adopted. An efficient accelerator for Falcon signature generation is achieved. As a
result, the final performance is 5.1× better than the state-of-the-art designs for NIST
security level V. Further the area-time product (ATP) for LUTs/FFs/DSPs/BRAMs
is improved by 2.8×, 4.5×, 4.2×, and 3.2×, respectively.

The rest of this paper is structured as follows: Section 2 introduces the notations used
throughout this work and provides a mathematical background, including a summary of
the Falcon protocol. Next, section 3 describes the architecture of the proposed accelerator
as well as the data flow and tree-like ffSampling method. Section 4 discusses the designs
of optimized modules involved in this paper. Section 5 presents the performance results on
FPGA/ASIC and provides comparisons with related works. Finally, section 6 concludes
the paper.

2 Preliminaries
2.1 Notations
Zq denotes the quotient ring Z/qZ, for q ∈ N. In Falcon, the modulus q = 12289 is prime,
so Zq is a finite field. We define the number fields as Q[x]/(φ), where φ = xn+1 for n = 2κ.
Matrices are represented using bold uppercase letters,(e.g. B); vectors are denoted using
bold lowercase letters, (e.g. v); and scalars, which include polynomials, are presented
in italic, (e.g. s). Let 〈·, ·〉 denote the inner product, and ‖ · ‖ denote its associated
norm. For polynomials represented by a and b, their inner product can be expressed as
〈a, b〉 = 1

deg(φ)
∑
φ(ζ)=0 a(ζ) · b(ζ). For a, its norm can be expressed as ‖a‖ =

√
〈a, a〉.

Extend the definitions of the inner product and norm to the vector dimensions. For
u = (ui)i and v = (vi)i in Qm, the inner product 〈u, v〉 is defined as

∑
i〈ui, vi〉. For our

choice of φ, the inner product coincides with the usual coefficient-wise inner product:
〈a, b〉 =

∑
0≤i<n aibi.

The discrete Gaussian distribution over integers can be represented as DZ,σ,µ, with
parameters σ and µ. The distribution samples x on the set of integers Z with prob-

206 FalconSign

ability DZ,σ,µ(x) = ρσ,µ(x)∑
z∈Z

ρσ,µ(z)
, where the Gaussian function is given by ρσ,µ(x) =

exp
(
− |x−µ|

2

2σ2

)
.

2.2 Falcon scheme
Falcon is a lattice-based cryptographic scheme, abbreviated from “Fast Fourier lattice-based
compact signatures over NTRU.” It is based on the GPV theoretical framework [GPV08]
for creating a hash-and-sign scheme, which requires two critical components: a class of
cryptographic lattices and a trapdoor sampler. Falcon employs NTRU lattices [HPS98]
and ffSampling [DP16] for these purposes. Therefore, Falcon can be succinctly described
as follows: GPV framework + NTRU lattice + Fast Fourier Sampling. Regarding security
in both classical and quantum computational models, the GPV framework has been proven
secure under the SIS (Short Integer Solution problem) assumption [BDF+11].

As the high-level framework of Falcon, GPV uses a full-rank matrix A ∈ Zn×mq (with
m > n) as the public key and a matrix B ∈ Zm×mq as the private key. The public key
and private key are orthogonal: B×At = 0 mod q. Given a message m, a signature of
m is a short vector s ∈ Zmq such that sAt = H(m), where H : {0, 1}∗ → Znq is a hash
function. To verify a signature s given the public key A, one must ensure that s is short
and satisfies sAt = H(m). This signature verification process is straightforward, but the
key generation and signature generation processes are more delicate. Next, we will provide
a detailed explanation of these three algorithms.

Falcon instantiates the GPV framework on the NTRU lattice. The core of the private
key comprises four polynomials f, g, F,G ∈ Z[x]/(φ) with short integer coefficients, which
satisfy the NTRU equation:

fG− gF = q mod (φ) (1)

The public key pk corresponding to the private key sk = (f, g, F,G) is a polynomial
h ∈ Zq[x]/(φ) such that h = gf−1 mod (φ, q).The key generation process consists of two
steps: NTRUGen and Falcon Tree Compute. NTRUGen primarily generates the polynomials
f, g, F,G that satisfy the NTRU equation. After obtaining f and g, it is necessary to
efficiently solve the NTRU equation to obtain F and G.

The final part of key generation involves processing the sk into a suitable format that
allows for fast signature generation. The Falcon tree provides this appropriate format.
The generation of the Falcon tree is achieved by computing the LDL* decomposition of
the matrix G = BB∗. Recursively use LDL* decomposition until the matrix size is 1, and
then perform normalization. Structurally, the Falcon tree is essentially a binary tree.

The Falcon signing algorithm first computes the hash value of the message m, and
the message m and a random value r are hashed to produce c ∈ Zq[x]/(φ). Then, using
information from the key, two short values, s1 and s2, are generated, which satisfy the
equation s1 + s2h = c mod q. To securely generate s1 and s2, the algorithm uses a
trapdoor sampler based on the FFT(fast Fourier transform), which relies on a precomputed
Falcon tree. By recursively applying split and merge operations, the algorithm efficiently
generates signatures while ensuring the private key remains secure. The sampler first
generates t← (c, 0) ·B−1 and outputs (s1, s2)← (t−z) ·B. Finally, s1 and s2 is compared
to the bound to ensure it is short enough. The output signature consists of the salt r
and the compressed form of s2. The details of the signature generation can be found in
Algorithm 1.

The signature verification process is much simpler than the key generation and signature
generation processes. Given the public key pk = h, a message m, a signature sig = (r, s),
and an acceptance bound bβ2c, the verifier uses the public key pk to check whether sig is
a valid signature of the message m.

Yi Ouyang et al. 207

Algorithm 1 FALCON.Sign(m, sk, bβ2c) from [PFH+20]
Require: Message m, Secret key sk, A bound bβ2c
Ensure: A signature sig of m
1: r ← {0, 1}320 uniformly
2: c← HashToPoint(r ‖ m, q, n)
3: t←

(
− 1
qFFT(c)� FFT(F), 1

qFFT(c)� FFT(f)
)

. t = (FFT(c),FFT(0)) · B̂−1

4: repeat
5: repeat
6: z← ffSamplingn(t,T)
7: s = (t− z)B̂ . s follows a Gaussian distribution: s ∼ D(c,0)+Λ(B),σ,0
8: until ‖s‖2 ≤ bβ2c . Compute ‖s‖2 in FFT representation
9: (s1, s2)← invFFT(s)
10: s← Compress(s2, 8 · sbytelength− 328)
11: until s 6= ⊥
12: sig ← (r, s)
13: return sig

Parameter settings of the algorithm are shown in Table 1.Falcon provides signature
generation schemes for two security levels: I and V. For security level I, the degree of the
base polynomial is 512, and for security level V, the degree of the base polynomial is 1024.
Both use a modulus of 12289, but the rejection threshold for signatures is different.

Table 1: Parameters of the two Falcon security levels.
Falcon-512 Falcon-1024

Target NIST Level I V
Ring degree n 512 1024
Modulus q 12289
Standard deviation σ 165.736617183 168.388571447
σmin 1.277833697 1.298280334
σmax 1.8205
Max. signature square norm bβ2c 34,034,726 70,265,242
Public key bytelength 897 1,793
Signature bytelength sbytelength 666 1,280

2.3 Fast Fourier Sampler
This section further explains the ffSampling (Fast Fourier Sampling) operation used
in signature generation, which is a key focus of this work. Trapdoor sampling takes
as input a matrix A, a trapdoor T , and a target c, and outputs a short vector s such
that stA = cmod q. The entire operation is performed in the FFT domain to improve
computational efficiency. The ffSampling operation recursively uses split and merge steps,
performing discrete Gaussian sampling at the lowest level to obtain (s1, s2). This specific
steps can be found in Algorithm 2.

Let φ and φ′ be power-of-two cyclotomic polynomials such that φ(x) = φ′(x2). For
example, φ(x) = xn+1 and φ′(x) = xn/2 +1. The core of the algorithm requires the ability
to split elements of Q[x]/(φ) into two smaller elements in Q[x]/(φ′). Conversely, we also
need the capability to merge two elements from Q[x]/(φ′) into one element in Q[x]/(φ).The
split and merge operations are also performed in the FFT domain, specifically using the
splitfft and mergefft operations.

208 FalconSign

Algorithm 2 ffSamplingn(t, T) from [PFH+20]

Require: t = (t0, t1) ∈ FFT (Q[x]/(xn + 1))2, a Falcon tree T
Ensure: z = (z0, z1) ∈ FFT (Z[x]/(xn + 1))2

1: if n = 1 then
2: σ′ ← T.value . It is always the case that σ′ ∈ [σmin, σmax]
3: z0 ← SamplerZ(t0, σ′)
4: z1 ← SamplerZ(t1, σ′)
5: return z = (z0, z1) . Since n = 1, ti = invFFT(ti) ∈ Q and zi = invFFT(zi) ∈ Z
6: end if
7: (`, T0, T1)← (T.value,T.leftchild,T.rightchild)
8: t1 ← splitfft(t1) . t0, t1 ∈ FFT

(
Q[x]/(xn/2 + 1)

)2
9: z1 ← ffSamplingn/2(t1, T1) . First recursive call to ffSamplingn/2
10: z1 ← mergefft(z1) . z0, z1 ∈ FFT

(
Z[x]/(xn/2 + 1)

)2
11: t′0 ← t0 + (t1 − z1)� `
12: t0 ← splitfft(t′0)
13: z0 ← ffSamplingn/2(t0, T0) . Second recursive call to ffSamplingn/2
14: z0 ← mergefft(z0)
15: return z = (z0, z1)

The second part of the sampler is the discrete Gaussian sampling function. This
function was briefly introduced in 2.1. This section further details how to securely sample
Gaussian samples z ← DZ,σ′,µ for any σ′ ∈ [σmin, σmax] and µ ∈ R. This is also a key focus
in the computational process of signature generation. The sampling process is carried out
by the SamplerZ function. This algorithm uses BaseSampler and BerExp as subroutines.
BaseSampler samples an integer z0 ∈ Z+ according to the distribution χ defined on
{0, . . . , 18}: ∀i ∈ {0, . . . , 18}, χ(i) = 2−72 · pdt[i]. The distribution χ is very close to the
“half-Gaussian” DZ+,σmax in terms of Rényi divergence, with R513(χ ‖ DZ+,σmax) ≤ 1+2−78.
The BerExp subroutine performs rejection sampling to approximate ccs× exp(−x). This
operation also requires the BerExp subroutine to call another subroutine, ApproxExp , to
compute exp(−x), completing the calculation of the entire rejection probability.

3 Design Decisions
In this section, the high-level hardware architecture for Falcon signature generation is
presented. The computations in Falcon signature generation are categorized as tasks, and
the execution logic of these tasks is described in this section. The control flow for complex
recursive operations and storage design are also involved.

3.1 Memory-Centric Overall Architecture
The current architecture for lattice-based PQC algorithms can be divided into two cat-
egories. One approach involves cascading different functional modules along the data
path [ZZW+22]. With meticulous design, this approach can achieve significant acceleration
but often lacks flexibility and sufficient support for complex control patterns. Another
approach is the instruction-set co-processor architecture, which offers better flexibility and
ease of integration [RB20]. However, this architecture’s simple instruction memory design
still falls short in supporting complex controls, such as loop unrolling for recursion, leading
to excessive resource consumption in Falcon implementations. Moreover, in cases where
there are significant differences in the utilization rates of functional modules within the
data path, some modules may not be fully utilized. Therefore, achieving high-performance

Yi Ouyang et al. 209

Data Memory

F
ab

ri
c

FPU

SamplerZ

SHAKE 256

HashToPoint

INT2FPR

FPR2INT

Check_Sig

T
o

ta
l

C
o

n
tr

o
l

Data Bus

Control Bus

Function Moulde

…

Control Moulde

…

Fabric Module

…

68bits

68bits

68bits

68bits

256bits

Encoder
68bits

68bits

Bank1

Bank2

Bank3

Bank4

256bits

Inner Bus

Figure 1: High-level architecture of FalconSign.

implementations requires careful consideration of data path balancing. Combining the
strengths of both approaches, we propose a highly efficient memory-centric architecture
for Falcon signature generation, as illustrated in Figure 1.

The whole architecture mainly consists of three main parts: Data Memory, Calculating
Modules, and Total Control Unit. The Calculating Modules include a Floating-Point
Processing Unit (FPU), Sample Unit (SamplerZ), Hash Module (SHAKE256), Message Sam-
pling Module(HashToPoint), Floating Point to Fixed Point Conversion Modules (FPR2INT
and INT2FPR), Signature Check Module (Check_Sig) and Encode Module(Encoder). The
data width of the hardware architecture is 256 bits, and the control path width is 68 bits.
The Data Memory is internally divided into four independently one-read one-write banks
to meet the requirements of simultaneous read and write operations. The BRAM resources
consumed by Data Memory vary with the security level. For Falcon-512 (security level-I),
it consumes 45 BRAMs, while for Falcon-1024 (security level-V), it consumes 58 BRAMs.

The FPU handles all floating-point computations in the algorithm. The floating-point
arithmetic operations are intensive in signature generation and result in a performance
bottleneck. More importantly, high flexibility is required due to the complex calculation
patterns in Falcon. The complex patterns include decomposition of the fast Fourier
sampler and merging logic in Falcon, which requires floating-point arithmetic operations
to support multiple vector sizes (n = 1, 2, 4, 8, . . . , 256). Therefore, we designed high-speed
and configurable FPUs, as shown in Section 4.2.1.

The Sampling Unit (SamplerZ) implements the discrete Gaussian sampling algorithm,
requiring 1024 or 2048 sampling operations for signature generation. The complex data
structures and computational flow in SamplerZ, along with its frequent invocation, make
it a significant bottleneck. Accordingly, the optimized and refined acceleration strategies
are devised for them, as detailed in Section 4.3.

The SHAKE256, HashToPoint, INT2FPR, FPR2INT, Check_Sig, and Encoder modules
are other essential functional modules in signature generation. The SHAKE256 module
transfers the message m and salt r to generate a huge amount of random numbers. The
HashToPoint module then uses these random numbers for rejection sampling to obtain
the polynomial c ∈ ZNq . The FPR2INT and INT2FPR modules convert between double-
precision floating-point numbers and fixed-point numbers. Check_Sig module calculates
the norm of the obtained signature s2 and compares it with the threshold to determine

210 FalconSign

256(||)SHAKE salt m

int(, ,)HashToPo RNG q N

N

qc

()INT c

()FPR c

(1, 2)s s

(2)IFFT s

Huffman

coder

Reject

SHAKE256

HashToPoint

INT2FPR

FPU

Post-Process

Encoder

Module

Time

Segment 0/1 Segment2 Segment3 Segment4 Segment5 Segment6

(2)FPR s

(2)INT s
FPR2INT

SamplerZ

*ˆ ˆG B B= *()T ffLDL G

Dynamic tree

computation

1ˆ((), (0))t FFT c FFT B−= •
(,)ffSampling t T

2 2|| 1, 2 ||s s

(1)INT s

Figure 2: Task flow for signature generation (Dynamic tree computation refers to the additional
computations required by Sign_Dynamic).

whether the signature is valid. Finally, the Encode module generates the valid signature.
The utilization rates of these modules are limited. In most cases, each module is only
utilized once during each attempt of signature generation. To balance their utilization
of the data path and reduce fabric resource consumption, the HashToPoint unit and
INT2FPR module are cascaded to fulfill pre-processing operations before sampling, and
FPR2INT and the Check_Sig module are also cascaded for post-processing operations
after sampling.

3.2 Dynamic Task Processing
Falcon provides two signature generation modes: Sign_Tree and Sign_Dynamic [PFH+20].
Sign_Tree uses a pre-expanded private key format called as “Falcon tree”, enabling faster
signature generation. In contrast, Sign_Dynamic does not need to pre-compute the “Falcon
tree”; instead, the “Falcon tree” is dynamically constructed during the signing process.
FalconSign supports both methods on the same hardware using a dynamic task process
mechanism. The major difference between these two methods lies in the expansion of FPU
functionality (floating-point square root and division operations) and the adaptation of the
control flow. The calculation of the “Falcon tree” need be integrated into the ffSampling
process.

In the proposed architecture, the Total Control module generates the 68-bit tasks
including the source address, destination address, and execution modes. Benefited from
this pre-defined task format, the computation units can be scheduled by the proposed
scheduling mechanism. The task flows for Sign_Tree and Sign_Dynamic in the FalconSign
architecture are illustrated in Figure 2.

In Figure 2, the calculation of ffSampling and ffLDL construct the main challenge
for control flow. The Falcon algorithm specification [PFH+20] describes the detailed
procedures of ffSampling and ffLDL. These two procedures utilize recursive structures,
involving a binary tree structure for the computation flow, which is similarly illustrated
in [SAW+23, LZS+24]. During signature generation, every computational node in the
binary tree need to be traversed in the specific order as shown in Figure 3. The depth of
the binary tree is 9/10 in Falcon 512/1024, respectively.

For the control flow implementation of ffSampling and ffLDL, we propose a dynamic
task updating strategy. This technique aims to reduce the resource consumption for
task maintenance while enhancing the flexibility of task scheduling. First, we use three

Yi Ouyang et al. 211

00

σ0 σ1

01

σ3

10

σ5

11

σ6

0 1

0

σ2 σ4 σ7

1

2
3

4
5

6

7

10

11

8

9

11

0 0(,)
0sample 1sample

3Height =

'

0 0 1()splitfft t t t→ +

1 0 1()splitfft t t t→ +

0 1 1(,)mergefft t t t→

0 1 0(,)mergefft t t t→

'

0 1 1 0()t t z l t+ − →

Discrete Gaussian Sampling
0 1(,)

Index0Level =

1Level =

2Level =

Figure 3: The scheduling mechanism of ffSampling. The index in the solid circles at each level
represents the position index in the the layer. Dashed-line boxes indicate a shared µ used for two
discrete Gaussian samplings.

coordinates Level, Index, and State to track the position of the computation flow, as
illustrated in the Figure 3. The State is divided into RIGHT-DOWN, RIGHT-UP,
LEFT-DOWN, and LEFT-UP, where each state corresponds to a sequence of operations.
Second, the current task is dynamically generated using the coordinate information and
then dispatched to the corresponding execution module, as shown in the Figure 4 and
Equation 2. Due to the similarity in computations at each node, the dynamic update
incurs minimal maintenance overhead. Finally, similar tasks at the same node are merged,
such as the SamplerZ tasks shown in the Figure 3, reducing the number of task dispatches.

(tasks, State_next) = Task_Update(Level, Index, State) (2)

Compared to the pre-filled program memory approach [RB20] , the dynamic task updating
strategy reduces the storage overhead of the ffSampling tasks in Falcon 512/1024 from
36kB/72kB to 80/80 slices. Additionally, this strategy can support multiple sampling
depths flexibly in ffSampling with minimal cost. For instance, adapting the task updating
method from Falcon-512 to Falcon-1024 only requires changing register values that denotes
the depth of the binary tree. Different from the approach presented in [SAW+23,LZS+24],
a detailed hardware task execution mechanism is proposed for ffSampling. By merging
similar tasks (e.g., two SamplerZ tasks with the same expected value), the number of
sampling tasks is reduced by 256/512 in Falcon 512/1024, respectively.

4 Optimized Modules
This section introduces several optimized modules designed to achieve high-speed perfor-
mance with minimal resource usage.

4.1 Compact Data Pre-processing Module
As shown in Algorithm 1, the input message is hashed through the SHAKE256 func-
tion [SD3] in the Falcon scheme. It only involves SHAKE256 once to generate a sufficient
number of random numbers, followed by threshold q rejection sampling to produce the
polynomial c ∈ Znq . Overall, the proportion of Keccak calculations and rejection sampling
time is less than 1% of the total time. Thus, these modules are designed for low resource
consumption and implementation complexity.

212 FalconSign

𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑒𝑣𝑒𝑙 + 1
𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 ≪ 1 + 1

𝑙𝑒𝑣𝑒𝑙 == 8

𝑖𝑛𝑑𝑒𝑥 1 == 0

RIGHT-DOWN

RIGHT-UP

LEFT-UP

LEFT-DOWN

𝑠𝑝𝑙𝑖𝑡𝑓𝑓𝑡(𝑡1)

𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑍

𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑒𝑣𝑒𝑙 + 1
𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 ≪ 1 + 1

𝑠𝑝𝑙𝑖𝑡𝑓𝑓𝑡(𝑡0′)

𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑍
𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑒𝑣𝑒𝑙 − 1
𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 ≫ 1

𝑚𝑒𝑟𝑔𝑒𝑓𝑓𝑡

𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑒𝑣𝑒𝑙 − 1
𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 ≫ 1

𝑚𝑒𝑟𝑔𝑒𝑓𝑓𝑡
𝑡0
′ = 𝑡0 + (𝑡1 − 𝑧1)⨀𝑙

𝑖𝑛𝑑𝑒𝑥 1 ! = 0

𝑙𝑒𝑣𝑒𝑙 == 8

𝑙𝑒𝑣𝑒𝑙! = 8

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦 = 28−𝑙𝑒𝑣𝑒𝑙

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦 = 28−𝑙𝑒𝑣𝑒𝑙

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦 = 28−𝑙𝑒𝑣𝑒𝑙

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦 = 28−𝑙𝑒𝑣𝑒𝑙

(𝑇, 𝐷11, 𝐷00) ← 𝐿𝐷𝐿 ∗ (𝑮)
𝑠𝑝𝑙𝑖𝑡𝑓𝑓𝑡(𝐷11)
𝑖𝑓 𝑙𝑒𝑣𝑒𝑙 = 8:𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑠𝑝𝑙𝑖𝑡𝑓𝑓𝑡(𝐷00)
𝑖𝑓 𝑙𝑒𝑣𝑒𝑙 = 8:𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒

OP𝑠 𝑖𝑛 𝑆𝑖𝑔𝑛_𝑇𝑟𝑒𝑒

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑂𝑃𝑠 𝑖𝑛 𝑆𝑖𝑔𝑛_𝐷𝑦𝑛𝑎𝑚𝑖𝑐

𝑆𝑎𝑚𝑝𝑙𝑒𝑟𝑍 𝑂𝑃

Figure 4: Task update strategy in ffSampling and ffLDL.

Padding

Table

Append

Buffer
Keccak
Core

SHAKE

Align&

Write

SHAKE256 Control

SHAKE-256

wr_data

wr_en

wr_addr

rd_data

pad_position

rd_addr

task_code

11

256

64

13 13

256

1

256

256
1344

1088

13length1pad_en

R
o
u
n
d
 s

ta
g
e

R
o
u
n
d
 s

ta
g
e

Figure 5: Efficient architecture of two-round SHAKE256.

A Keccak module is instantiated to perform the SHAKE256 function, which is shown
in Figure 5. This two-round Keccak core requires 12 cycles to compute the “state-permutate”
operation. After completing the absorbing phase of SHAKE256, it takes 12 cycles to output
1088 bits of data. The generated data is written into BRAM after alignment operations.
For the rejection sampling operation, the algorithm takes a 16-bit random digit r each
time. If r is less than kq (where k = b216/qc), the value is accepted, and ci = r mod q is
obtained. The final sampled output is c ∈ Znq (with n = 512 or 1024). The parallelism of
the HashToPoint function is 4-coefficient (256-bit), which matches the data path of our
architecture.

4.2 Vectorized Floating-Point Processing Unit
Dense floating-point computations occupy about 50% of the signature generation time
[ZZO+24,KA24]and they become the bottlenecks of ffSampling. The acceleration of the
floating-point computations requires a high-speed, low-latency, reconfigurable FPU. The
low-latency requirement arises from the severe data dependencies between floating-point
vector calculations, where deeply pipelined design would cause a significant number of
pipeline bubbles. The reconfigurable requirement is dictated by the interconnections
between the operators. The floating-point operators include complex-number addition, sub-
traction, multiplication, FFT/IFFT, splitfft, and mergefft. Among these, FFT/IFFT

Yi Ouyang et al. 213

d_i_a_re

d_i_a_im

d_i_b_re

d_i_b_im

d_o_a_re

d_o_a_im

d_o_b_re

d_o_b_im

d_i_c_im

d_i_c_re

64bits

64bits

64bits

64bits

1/2

1/2

~

1bit

1/2

1/2

BYPASS

0

1

2

3

0

1

2

3

0

0

1

1

2

2

3

3

Output

Permutate

BYPASS

0

0

1

1

2

2

3

3

0

1

2

3

0

1

2

3

Input

Permutate

BANK0 BANK1 BANK2 BANK3

Twiddle Factor Twiddle Factor66/129 rows

Input Data Twiddle Factor

256 4bits

2
5

6
4
b
its

256 2bits 256 4bits

Output Data

: fpr_add

: fpr_sub

: fpr_mul

~ : neg

: data path

: Permutation

2
5

6
4
b
its

BFU

: Pipeline reg

Figure 6: FFT/IFFT Architecture.

is only called three times, but its underlying BFU (butterfly computation unit) contains a
rich set of floating-point add/sub/mul computational resources. Moreover, mergefft and
splitfft are sub-processes of FFT/IFFT [PFH+20]. These operators are adapted to the
FFT/IFFT architecture in our work, increasing computational resource utilization.

For the implementation of FFT, there are two hardware methodologies: pipelined FFT
HW architectures [Gar22] and vectorized FFT HW architecture. The former architecture
has problems with poor reconfigurability, high latency, and low compatibility in the
Falcon signature scenario. Cascaded BFUs are not suitable for reconfiguration into vector
computations. Secondly, the pipelined FFT architecture uses a large number of registers,
which reduces memory access in FFT/IFFT operations. More importantly, the pipelined
FFT architecture is not compatible with the splitfft and mergefft calculations, because
these calculations need to be calculated separately by stage. However, in other floating-
point computations, these registers are underutilized, resulting in poor area efficiency.
The vectorized FFT architecture has hardware-friendly reconfigurability and low latency.
However, traditional in-place calculations require extensive input-output permutation
networks and intensive storage access. Considering the large BRAM consumption of the
Falcon private key and the design goals of the operator, the vectorized FFT architecture
is chosen in our architecture. Inspired by [ZZL+22]’s vectorized NTT architecture, a
vectorized FFT architecture is proposed with a scalable parallel computing scheme for
FFT/IFFT and splitfft/mergefft.

4.2.1 Vectorized FFT/IFFT with Conflict-Free Strategy

[XHY+20] introduced an in-place DIT-NTT computation hardware architecture, but
it incurs substantial permutation networks in vectorized architectures. This is because
the two operands of butterfly computation are scattered within a single vector, requiring
permutation operations. The design of FFT has a similar issue. To address this, an FFT
parallel scheme is proposed with a vector dimension of l(l = 2m,m ∈ N) , which requires
only one type of permutation network.

Firstly, from another perspective of the DIT-FFT: an N -point FFT requires a total of
n = log2N stages of transformation. According to the recursive principle, the calculations
in i-th stage need 2n−1−i data pairs {X0(k), X1(k)} to perform the same merge operation.
To clearly demonstrate this behavior, the point-value expression of the sub-polynomials

214 FalconSign

(0), (1), (2), (3)x x x x

(4), (5), (6), (7)x x x x

(8), (9), (10), (11)x x x x

(12), (13), (14), (15)x x x x

{0,0} {0,0} {1,0} {1,0}(0), (1), (0), (1)X X X X

{4,0} {4,0} {5,0} {5,0}(0), (1), (0), (1)X X X X

{2,0} {2,0} {3,0} {3,0}(0), (1), (0), (1)X X X X

{6,0} {6,0} {6,0} {7,0}(0), (1), (0), (1)X X X X

{0,1} {0,1} {0,1} {0,1}(0), (2), (1), (3)X X X X

{1,1} {1,1} {1,1} {1,1}(0), (2), (1), (3)X X X X

{2,1} {2,1} {2,1} {2,1}(0), (2), (1), (3)X X X X

{3,1} {3,1} {3,1} {3,2}(0), (2), (1), (3)X X X X

{0,2} {0,2} {0,2} {0,2}(0), (4), (2), (6)X X X X

{1,2} {1,2} {1,2} {1,2}(0), (4), (2), (4)X X X X

{0,2} {0,2} {0,2} {0,2}(1), (5), (3), (7)X X X X

{1,2} {1,2} {1,2} {1,2}(1), (5), (3), (7)X X X X

{0,3} {0,3} {0,3} {0,3}(0), (8), (4), (12)X X X X

{0,3} {0,3} {0,3} {0,3}(2), (10), (6), (14)X X X X

{0,3} {0,3} {0,3} {0,3}(1), (9), (5), (13)X X X X

{0,3} {0,3} {0,3} {0,3}(3), (11), (7), (15)X X X X

[0]V

[1]V

[2]V

[3]V

[0]V [1]V

[2]V[3]V

0 1Bank Bank+ 2 3Bank Bank+

Conflict-Free Memory Scheme

0stage = 1stage =

2stage = 3stage =

1()stage initial= − intra vector permutation

inter vector permutation

Figure 7: 16-points FFT vector data flow with vector size l = 4. The result of each stage of the
butterfly calculation in the vector transformation needs to be output permuted.

at point k is defined as follows: X{j,i}(k) =
∑ N

2n−i
−1

r=0 x(j + r · 2n−i)W (j+r·2n−i)k
N , where i

denotes the transformation stage, and j indicates the index of the polynomial in this stage.

X(k) =
N−1∑
n=0

x(r)W kr
N , k = 0, 1, . . . , N − 1

= X{0,n−1}(k) +X{1,n−1}(k)
=
{
X{0,n−2}(k) +X{2,n−2}(k)

}
+
{
X{1,n−2}(k) +X{3,n−2}(k)

} (3)

In Equation 3, X{j,i} represents the two sub-polynomials after splitting operation. It
can be seen that in the i-th order transformation, the paired polynomials are X{j,i}
and X{j+2n−1−i,i}. And a permutation network for the coefficients is introduced. For
the input vectors a = [a0, . . . , al−1] and b = [b0, . . . , bl−1], the permutation results are
ã = [a0, b0, . . . , al/2−1, bl/2−1] and b̃ = [al/2, bl/2, . . . , al−1, bl−1]. Following this strategy,
the new FFT computation flow is obtained as shown in Figure 7. The phase stage = −1
represents the initial data’s vector distribution. Stages 0 and 1 show the impact of intra-
vector permutation on the distribution of the computational results (when i < log2 l,
the output permutation operation occurs within the vector). Stages 2 and 3 depict the
inter-vector output permutation because at this stage the coefficient distribution of the
sub-polynomials X{j,i} extends beyond the range of a single vector. The result distribution
after the intra-vector permutation and specifically the transformation resulting of the d-th
(d = log2l − 1) stage can be summarized as follows:

v[k] = X{ k
N

l×log2l
+[kmod N

l×log2l
]×l,d}, k ∈ [0, 1, 2, · · · , N/l − 1] (4)

Based on Figure 7 and the distribution of changes between vectors, the address intervals
of the input vectors for butterfly computation are all powers of 2. Utilizing this property,
the conflict-free logical-to-physical address mapping scheme is designed.

Then, this sub-polynomial can be stored in the memory continuously. For a dimension
ofm sub-polynomial (at the i-th stage transformation, m = 2n−1−i), the order of coefficient
storage is:

X{j,i}(k) =
{
X{j,i}(BitRev(0)), X{j,i}(BitRev(1)), · · · , X{j,i}(BitRev(m− 1))

}
(5)

BitRev denotes the bit-reversal operation. This leads to the corresponding twiddle factor
generation method, as depicted in Algorithm 3. The proposed FFT scheme reduces the

Yi Ouyang et al. 215

storage consumption and optimizes the loading process of twiddle factors by combining the
permutation network with the address generation method in Algorithm 3. During the first
d = log2 l stages, twiddle factors are read only once to be reused for each stage’s remaining
cycles. 74.6% memory accesses are avoided compared to the unreused method for 256-point
FFT. This is similar to the “Early Shuffling” technique for NTT transformations on AVX
architecture in [Sei22].

The whole vectorized FFT scheme proposed is as shown in the Algorithm 4. In the
algorithm, CircleRightShift(x, y, z) denotes the circular right shift function. Specifically,
it represents the bits obtained after circularly shifting z-bit x-variable y bits to the right.

Algorithm 3 Generation of Twiddle Factor for Vectorized FFT Scheme
Require: polynomial of degree N : x, vector dimension: l
Ensure: factor twiddle: ω
1: n = log2N , d = log2l
2: for i = 0; i < d; i+ + do
3: ω[i] = [W BitRev(0)

2i , · · · ,W BitRev(2i−1)
2i]×(l/2i) . ×

(
l

2i
)
denotes that the vector is

replicated l
2i times

4: end for
5: for i = d; i < n; i+ + do
6: for j = 0; j < 2i−d; j + + do
7: ω[i+ j] = [W BitRev(j×l)

2i , · · · ,W BitRev((j+1)×l−1)
2i]

8: end for
9: end for

Algorithm 4 Vectorized FFT Scheme
Require: Polynomial of degree N : x, twiddle factor: ω, vector dimension: l
Ensure: FFT(x(k))
1: n = log2N, d = log2l
2: for i = 0; i < N/l; i+ + do
3: v[i] = x[i× l : (i+ 1)× l − 1]
4: end for
5: space = 2n−d−1, m = 0
6: for i = 0; i < n; i+ + do
7: rotate_num = i%(n− d)
8: distance = CircleRightShift(space, rotate_num, n− d)
9: for j = 0; j < 2n−d−1; j + + do
10: addr = CircleRightShift(BitRev(j), rotate_num, n− d)
11: v1 = v[addr],v2 = v[addr + distance]
12: VectorBFU(v1,v2,ω[m]) . Vector BFU operation
13: for k = 0; k < l/2; k + + do . Output Permutation
14: v1_wr[2k] = v1[k]
15: v1_wr[2k + 1] = v2[k]
16: v2_wr[2k] = v1[k + l/2]
17: v2_wr[2k + 1] = v2[k + l/2]
18: end for
19: v[addr] = v1_wr,v[addr + distance] = v2_wr
20: m = m+ i >> (n− d− 1− (i− d)) . Reusing the Twiddle Factor
21: end for
22: m = m+ 1
23: end for

216 FalconSign

Comparision with related works. Compared to the previous vectorized FFT/NTT
schemes, the proposed FFT architecture offers better scalability, fewer permutation net-
works, and efficient reusability for other arithmetic operations in Falcon at the minimal
resource cost. The number of permutation networks are reduced from 6 to 2 compared to
the work in [XHY+20] for 8-parallel FPU. A detailed correctness proof of the vectorized
FFT architecture with any parallelism is firstly provided in this work, which has not been
provided in [ZZL+22]. The other specific splitfft/mergefft operators in Falcon are
also adapted to the vectorized FFT scheme with minimal overheads, which is detailed in
Section 4.2.2.

Algorithm 5 Vectorized mergefft Scheme
Require: FFT result of the current polynomial x(k) with degree N ,degree of the initial

FFT result: n0 = 256, twiddle factor: ω, vector dimension: l = 4
Ensure: splitfft(FFT (x(k)))
1: twiddle_factor_rd = [0, 1, 2, 3, 5, 9, 17, 33, 65, 129, 257, 513]
2: rotate_rd = [0, 0, 0, 0,−1,−1,−1, 0, 1]
3: rotate_wr = [0, 0, 0, 0,−1,−1,−1, 0, 1]
4: space_rd = [0, 0, 0, 1, 1, 1, 1, 16, 16]
5: n = log2N, d = log2l
6: space = space_rd[n]
7: distance = CircleRightShift(space, rotate_num, n− d)
8: for i = 0; i < 2n−d−1; j + + do
9: rd_addr = CircleRightShift(BitRev(j), rotate_rd[i], n− d)
10: wr_addr = CircleRightShift(BitRev(j), rotate_wr[i], n− d− 1)
11: v1 = v[rd_addr],v2 = v[rd_addr + distance]
12: VectorBFU(v1,v2,ω[m])
13: for k = 0; k < l/2; k + + do . Output Permutation
14: v1_wr[2k] = v1[k]
15: v1_wr[2k + 1] = v2[k]
16: v2_wr[2k] = v1[k + l/2]
17: v2_wr[2k + 1] = v2[k + l/2]
18: end for
19: v[wr_addr] = v1_wr,v[wr_addr] = v2_wr
20: m = m+ twiddle_factor_rd[n] + i
21: end for

4.2.2 Hardware-reusage of Splitfft and Mergefft Processing

Naturally, the individual splitfft and mergefft are adapted to the FFT/IFFT archi-
tecture and vectorized scheme. As analyzed in Section 4.2, mergefft and splitfft are
sub-steps of FFT and IFFT, respectively. In our indexing scheme Section 4.2.1, this can
be represented as follows (X{0,i} as an example in an N -points FFT with vector dimension
of l):

splitfft(X{0,i}) = X{0,i−1} +X{0+2n−i,i−1}

mergefft(X{0,i−1}, X{0+2n−i,i−1}) = X{0,i}
(6)

where i denotes the i-th stage transformation. Therefore, the merging operation of any
two paired sub-polynomials is mergefft. Correspondingly, splitting any polynomial into
two sub-polynomials becomes splitfft. Thus, in practical implementation, it is only
needed to implement the splitting and merging of sub-polynomials X{0,i}. Consequently,
during adaptation, it only needs to design an address generation pattern for X{0,i}. The
specific implementation can be seen in the Algorithm 5.

Yi Ouyang et al. 217

The vectorized scheme of mergefft differs from the vector scheme of FFT because it
eliminates the reuse of twiddle factors. To implement this function in the FFT/IFFT archi-
tecture with minimal cost, the input addresses are pre-computed for X{0,i} at each stage of
splitfft/mergefft. The generation of addresses involves rotate_rd, rotate_wr, and
space_rd in the Algorithm 5. For the twiddle factor processing, it is needed to mark the
initial read address of the i-th stage, which is finally integrated into twiddle_factor_rd.

Finally, memory conflicts are resolved by using cross-storage. These read-write conflicts
occur when X{0,i} stores the two sub-polynomials output by the splitfft operation in the
normal arrangement, resulting in both vectors written to the same banks simultaneously.
The interleaving storage method is adopted to solve this problem. Specifically, the address
generation is mirrored for X{1,2}, so the data that should be written to Bank0+Bank1 is
written to Bank2+Bank3, and vice versa, forming a interleaving-storage with X{0,2}(0) to
avoid the conflict. The original storage is defined as the “Positive Set”, while the interleaving
storage is referred to as the “Negative Set”. This interleaving storage implementation only
requires computing 1-bit signal bank_sel to change the bank selection.

4.2.3 Pipelined BFU and Parallelism Evaluation

As mentioned in 4.2, it is natural to use a unified butterfly unit architecture supporting
multiple functions, rather than multiple modules that each support a single function. The
designed unified butterfly unit is shown in Figure 6. For vectorized operations involving
complex number arithmetic, the FPU module supports batch calculations with different
vector widths of single-bank, dual-bank, and four-bank. The interleaving-storage addresses
of input operands proposed in 4.2.2 are adopted in the four-bank vectorized calculations.

Floating-Point Unit Optimization. Double-precision floating-point operations
[Kah96] are involved in Falcon, but the special values (Infs, NaNs, and subnormals) are
not needed to be handled due to the Falcon’s algorithm characteristic [PFH+20]. This
allows for further optimizations of fpr_mul, fpr_add, and fpr_sub hardware modules.
The design without special values handling reduces the area overheads much and saves
DSP resources in FPGA implementations. After optimization, the DSPs consumption
of a single FPU is decreased by 47%. Additionally, the utilization of DSPs can also be
optimized for constant multiplication. Optimization results are shown in Table 2.

Table 2: Optimization results and comparisons of floating-point modules.
ASIC (µm2 / MHz) FPGA (LUTs/FFs/DSPs / MHz)

DesignWare
2019 IP

FalconSign
Opt, this work

Vivado 2022.2
IP

FalconSign
Opt, this work

fpr add 2158 / 500 1992 / 500 882/260/ 0 / 247 600/193/0 / 235
fpr mul 9843 / 500 8173 / 500 122/102/13 / 212 219/129/9 / 275

Parallelism Evaluation. The parallelism of BFUs is determined by assessing the
performance improvements of different BFU numbers for the same computation workload.
The calculations of FPU are involved in the data preprocessing/postprocessing, ffSampling
and ffLDL. Based on the proposed FFT hardware, the cycle amount of FPU-related
calculations are estimated accurately for different parallelisms of BFUs. Figure 8 shows
that the design of 4-parallel BFUs lies in the turning point of the performance curve
and improves the ASIC performance by 38%, while higher-parallel BFUs yield less than
5% additional gains. Therefore, the parallelism of 4 is adopted in our design to achieve
high-throughput Falcon signature generation with reasonable overheads.

Comparisons with related works. The proposed floating-point modules features a
compact pipeline design and higher frequency, with optimizations for Falcon’s floating-point
computation characteristics. Compared to the open-source Berkeley floating-point module

218 FalconSign

(a) Falcon-512-ASIC-FPU (b) Falcon-512-FPGA-FPU

Figure 8: The performance curve of the FPU-related calculations in Falcon-512 with the parallelism
degree of BFUs.

L R

FPR2INT

INT2FPR

1−

'

/L Rr r ccs

min

Shared

 fpr_mul

Basesamp

INT2FPR

'

Shared

 fpr_mul

INT2FPR

0S

1S

1S 0S 0S
2

0z 2

max

1

2

1

22

0z

z

square
0z z→

z r0tmp 1tmp

FPR2INT

INT2FPR

1−

1S

2S

0S

x

1S

1tmp

ln 2ccs

3S Compare ()Uniformbit

3 / 3 1S S − _z final

0y

[]C ishift

?Accept

sel

0tmp x r 1S

1

ln 2
632

Refill Control

done

/start
done

/start

restart

read_10 read_1random_data random_data1bit 1bit80bits 8bits

Q
R

O
U

N
D

Q
R

O
U

N
D

Q
R

O
U

N
D

Q
R

O
U

N
D

Q
R

O
U

N
D

Q
R

O
U

N
D

Q
R

O
U

N
D

Q
R

O
U

N
D

T
ran

sp
o

se

M
U

X

fetch_en random_data1bit 512bits

R
eg

ChaCha20

BerExpSamp_loopPre_samp

Figure 9: Dedicated SamplerZ Module.

used in [YSZ+24], the handling logic for special values is saved and the maximum frequency
increases from 83 MHz to 185 MHz on the same device. Compared to [LYN+24], the
frequency increases from 300 MHz to 500 MHz under the same 28nm process benefiting
from the optimized design. Additionally, the pipeline depth of multiplication hardware is
reduced from 5 stages to 2 stages, which decreases the computation latency.

4.3 Low-Latency Gaussian Sampler
The Gaussian sampler performs the discrete Gaussian sampling operation, with the output
as an integer z ∼ DZ,σ′,µ. Generating a valid signature at security level I/V at least
requires 1024/2048 samples. The input µ for each sampling is derived from the message
m, the private key sk, and the result of the previous signature, while σ′ is part of the
private key. It can be seen that the calculations of these samples are dependent on the
previous samples, which forms a computational bottleneck. Hence, the sampler hardware
is optimized for low latency to reduce the whole execution cycles.

The proposed Gaussian Sampler is shown in Figure 9. The Sampler consists of the
ChaCha20, Refill_Control, Pre_samp, Samp_loop, and BerExp modules. ChaCha20
and Refill_Control are responsible for providing random numbers in real-time, while the
remaining modules execute the sampling computation. The key computational flow for low-

Yi Ouyang et al. 219

latency sampling is designed with balanced pipelining. Therefore, the sampling operation
is divided into three stages: Pre_samp module computes r ← µ− bµc and ccs← σmin/σ

′;
Samp_loop module computes BaseSampler() function and x← (z−r)2

2σ′2 −
z2

0
2σ2

max
; BerExp

module executes the BerExp() function. The three computational processes correspond to
the three modules in SamplerZ.

For the Pre_samp part, bµc and σmin/σ
′ are not hardware-friendly. For b.c, it cannot

be directly implemented. Generally, when converting a floating-point number to a fixed-
point number, the Rounding rule is obeyed to convert the floating-point number to the
nearest integer, which is not necessarily the floor value. Therefore, a prediction mechanism
is proposed to resolve this problem in combination with the computation r ← µ − bµc.
r0 ← µ−Rounding(µ) and r1 ← µ−(Rounding(µ)−1) are computed consecutively to judge
the sign bit of r0. If it is zero, r = r0; otherwise, r = r1. The second optimization occurs
in the Sign_Tree singing method, where 1/σ′ is computed during the pre-computation of
the expanded form of the private key. This approach effectively converts floating-point
division into multiplication, aligning with the Falcon’s documentation [PFH+20]. For the
floating-point multiplication unit, even if the sampling is rejected, Pre_samp does not
need to recompute. Samp_loop and BerExp need to recompute. The calculations between
these two parts are not overlapped. Therefore, Pre_samp and Samp_loop modules can
share the multiplication unit.

Besides, the Samp_loop part is optimized to reduce the latency. The main method is
to parallelize subtraction, multiplication, and BaseSampler(). First, 1

σ′2 is hidden by the
BaseSampler() operation time. Second, (z − r) is computed in parallel with 1

2σ′2 .
The BerExp module adopts a dedicated multiplication unit and calculates the re-

quired floating-point calculations through time-division multiplexing. Additionally, for
the bx/ ln 2c operations, the same prediction mechanism as Pre_samp is used. For
z ←

⌊
263 · x

⌋
, it is immediately followed by the operation y ← C[u] − (z · y) � 63. To

reduce the latency, the same operation is performed with z ← Rounding(263 · x) − 1 as
input. Finally, the prediction mechanism determines the correctness of the output.

The whole sampling process has a cycle amount of 67-74. The computation delays for
Pre_samp, Samp_loop, and BerExp are 11 cycles, 16 cycles, and 40-47 cycles, respectively.
The fluctuation in BerExp’s delay is caused by rejections. The peak usage of random
numbers occurs from the start of Samp_loop to BerExp rejection, followed by immediately
re-entering Samp_loop for resampling until BerExp uses random numbers again. In this
process, 224 random bits are consumed in 103 cycles (16+47+40). As shown in the Figure 9,
ChaCha20 is used to generate random numbers, and Refill_Control manages the random
number supply. Refill_Control has a 256-bit buffer to prefetch random numbers, ensuring
real-time supply. The buffer adopts the FIFO strategy to prefetch random bits. When
new random numbers are needed, ChaCha20 can generate them within 80 cycles, which
can meet the peak usage demand. ChaCha20 module requires 10 rounds of transformation
to generate a set of random numbers. Each round needs eight- QROUND operations. For
consistency with the official software, eight sets of random numbers are generated at once
and then are transposed before output. In the application scenario of the FalconSign
accelerator, ChaCha20 module needs a true-random number generator to generate seeds
for initializing ChaCha20.

Latency Optimization and Comparisons. Two optimization techniques for low-
latency sampling are proposed: 1. Merge the consecutive samples with the same σ′ input
to hide the Pre_samp phase of the second sample and the sampling cycles is reduced
up to 7%; 2. Overlap the computations in Pre_samp and Samp_loop, enabling the
part of the Samp_loop calculations to start three cycles in advance. Based on these
optimizations, the design implements pipelined optimization and time hiding for certain
sampling phases, reducing the latency of single sampling to 74 cycles and double sampling
to 137 cycles unless rejected. This is significantly lower than existing samplers, which

220 FalconSign

require 1807 cycles [KA24] and 104 cycles [YSZ+24] for single sampling. Additionally,
on the Artix-7 and Zynq UntraScale platform, perfermance improvements of 13.1× and
3.1× were achieved compared to [KA24] and [YSZ+24], respectively. To the best of our
knowledge, this represents the lowest sampling latency (74 cycles per sample), achieving a
maximum frequency of 185 MHz on FPGA.

4.4 Other Modules
The remaining modules include FPR2INT, INT2FPR, and Check_Sig modules. INT2FPR
is mainly used to convert the polynomial c generated by the HashToPoint rejection
sampling into double-precision floating-point format. Conversely, FPR2INT converts the
valid signature polynomial s2 from floating-point format to 16-bit fixed-point format and
then sends it to the Encoder module for encoding. These two modules only need to
be executed once in each signature generation process. The floating-point to fixed-point
conversion circuits used are the IP provided by Xilinx Vivado, with a conversion parallelism
of 4.

The Check_Sig module is used to handle the boundary check of the signature. As
described above, the generated signature must be small enough to be considered valid.
This criterion is ‖s‖2 ≤ bβ2c. The computation of ‖s‖2 is essentially the sum of the squares
of each element of s2, s1, denoted by the summation symbol

∑
s2

2i + s2
1i .

5 Implementation and comparison
The proposed architecture is described in System Verilog and is simulated, synthesized,
and implemented using Xilinx Vivado for the target platform Xilinx ZCU104 board that
has an XCZU7EV-2FFVC1156 FPGA. Additionally, our architecture is evaluated on the
TSMC 28nm HPC platform.

5.1 Resources Usage and Performance Results
The resource consumption on FPGA of the whole design and major modules are shown
in Table 3. The utilization ratios of LUTs/FFs/DSPs/BRAMs for Falcon-512/1024 on
the FPGA platform is 34%/11%/13%/14% and 34%/11%/13%/18%, respectively. The
FPU core accounts for more than 60% LUTs, 55% FFs, and 65% DSPs of the total
consumption. This is because the high-speed reconfigurable BFU array in the FPU
consumes 16/16/32 expensive double-precision floating-point Add/Sub/Mul units to match
the data path bandwidth. The second most area-consuming module is the SamplerZ
core, which occupies 18% LUTs, 22% FFs, and 76 DSPs of the total consumption. This
is for balancing the critical path of the complex computation pipeline and hiding some
computations, resulting in significant overheads but greatly reducing the sampling latency.
Additionally, the ChaCha20 random number generator in the Sampler consumes 4096-bit
registers to transpose random numbers, ensuring consistency with the official software
implementation. The storage consumption is mainly occupied by the Data memory module,
which stores the large private key and temporarily stores the intermediate values in the
tree-like computations. The storage usage employs dual-port memory to reduce waiting
times during FPU computations. Compared to the utilization of single-port memory on
the ASIC platform, this approach saves 5% cycle number.

The performance and resource consumption results of the implementation are shown
in Table 3. The accelerator can operate at 185MHz after placing and routing. Table 3
lists the computation cycles of the main modules, with each module corresponding to a
computation phase of the protocol, as illustrated in Figure 2. The FPU and SamplerZ
consume 30% and 65% of the computation time, respectively. After deep optimization,

Yi Ouyang et al. 221

Table 3: Resource consumption and cycle consumption of the major module in Falcon-512/Falcon-
1024.(Frequency: 185MHz)

Module LUTs FFs DSPs BRAMs Cycles
FPU 45859/44263 24901/24920 144/144 0/ 0 47090/ 95202
SamplerZ 14710/14723 10731/10550 76/ 76 0/ 0 104947/206268
SHAKE256 7286/ 7572 3756/ 3761 0/ 0 0/ 0 201/ 381
HashToPoint 1623/ 1630 263/ 259 0/ 0 0/ 0 143/ 280
INT2FPR 694/ 714 687/ 687 0/ 0 0/ 0 140/ 268
FPR2INT 844/ 861 1076/ 1075 0/ 0 0/ 0 280/ 536
Data Memory 1286/ 1296 2158/ 2168 0/ 0 45/58 -
Total 80497/80496 46768/46495 220/220 45/58 160060/317450
Utilization
Ratio 34%/34% 11%/11% 13%/13% 14%/18% —

the FPU still occupies a significant proportion of the computation time, reflecting that
floating-point vector calculations in ffSampling are the primary computational bottleneck.
For the SamplerZ module, discrete Gaussian sampling remains the largest computational
bottleneck in high-speed scenarios, consuming over half of the computation time.

Our design is also evaluated on the TSMC 28nm process through Design Compiler-
2022.03 for the evaluation of extremely low-latency and high-speed scenarios. On the ASIC
platform, the proposed architecture of Falcon-I occupies an area of 0.71mm2 (759.0K
gates + 136.3KB SRAM) and operates at a frequency of 530MHz, while the accelerator
of Falcon-V occupies 0.97mm2 (771.6K gates + 272.6KB SRAM) with 500MHz. The
average power is 62.0 mW/68.7 mW and the energy consumption is 11.8uJ/26.1uJ for
Falcon-512/Falcon-1024, respectively. The signature generation of our work consumes
99k/188k cycles, achieving a latency of 0.19ms/0.38ms and throughput of 5.2k/2.6k
OPS for Falcon-512/Falcon-1024, which can adapt to most of the scenarios of high-speed
signature generation. The reduction in cycle counts benefits from an optimized pipelined
design for the primary bottleneck modules, FPU, and SamplerZ.

Sign_Tree vs. Sign_Dynamic. Sign_Tree mode generates the signature by
pre-expanding the private key into a “Falcon tree”, while Sign_Dynamic mode dynam-
ically expands the private key to save storage consumption. The resource usage for
Sign_Dynamic for Falcon-512/1024 on the FPGA platform is 99949/53578/220/45 and
100442/49771/220/55, respectively, with an implementation frequency of 158 MHz and
signature cycles of 264k/527k. For Sign_Dynamic, the support for dynamic computation
of the “Falcon tree” introduces floating-point division and square root modules, resulting
in an increase in LUTs/FFs/DSPs/BRAMs and an cycle account increase of 65%. In the
software platform, Sign_Dynamic also causes a performance drop of 103% [Por19]. The
utilization of BRAMs is reduced by 10% in Falcon-1024 as the memory can be reused to
dynamically generate the “Falcon tree.”

5.2 Comparisons with Related Works
In Table 4, our architecture is compared to the most recent implementations of post-
quantum signature algorithms. Due to differences in implemented algorithms, security
levels, implementation platforms, and design methodologies, a fair comparison is not
always possible. Nonetheless, our architecture achieves a remarkable acceleration effect for
Falcon signature generation while consuming a moderate amount of area and resources.
To the best of our knowledge, this architecture is also the first fine-grained optimized full
hardware implementation for Falcon signatures and it is the fastest signature generation
hardware architecture with the best ATP.

222 FalconSign

Table 4: Comparison results of high-speed Signature generation of Falcon. (SW: software
implementation; HW: full hardware implementation; HLS: high-level synthesis; HW/SW denotes
hardware-software co-design.)

Level
Area

(LUT/FF/DSP/BRAM)
(or mm2 for ASIC)

Freq
(MHz) Cycles

ATP
(LUT/FF/DSP/BRAM)

(or mm2 for ASIC)
SW [NG23] I — 3200 442k —M1 (ARMv8) V 882k

SW [PFH+20] I — 2300 389k —Core i5 (AVX2) V 790k
HW/SW
[KA24]

(Artix-7)
I c (3683/2107/-/2) a 121 50407k 22.2 × /21.8 × / − /21.5×

HW/SW
[YSZ+24] I

(18565/3210/17/0) a 83

1554k 5.1 × /1.5 × /1.7 × /−

(Zynq
UltraScale+) V 3188k 5.1 × /1.5 × /1.7 × /−

HW/SW
[LYN+24] I

0.038 a 300

6591k 10.8×

(Samsung
28nm) V 14078k 8.4×

HW (HLS)
[SAW+23] I 46971/44249/182/32

187.5

788k 2.8 × /4.6 × /4.0 × /3.5×

(Zynq
UltraScale+) V 45223/41370/182/37 1638k 2.8 × /4.5 × /4.2 × /3.2×

HW
This work
(Artix-7)

I 79065/46389/226/45 65 160k —

HW
This work I 80497/46768/220/45

185

160k

1.0 × /1.0 × /1.0 × /1.0×(Zynq
UltraScale+) V 80496/46495/220/58 320k

HW
This work I 0.71(0.39(L)+0.32(M)) b 530 99k

1.0 × /1.0 × /1.0 × /1.0×(TSMC
28nm) V 0.97(0.40(L)+0.57(M)) b 500 188k

a For the HW/SW implementation, the resource consumption and ATP are calculated only based on the
hardware part, without considering the area consumption of general processors.

b L: logic, M: Memory.
c The security level is not clearly stated in their paper, Level-I is inferred.

First, compared to the software implementation, FalconSign achieves comparable
performance to [NG23] and [PFH+20] with a smaller area. FalconSign requires 0.19 ms to
complete the signature generation for Falcon-512, while the Apple M1 (ARMv8) platform
[NG23] requires 0.14 ms, and the Intel® Core® i5-8259U (Coffee Lake) platform [PFH+20],
using AVX2 and FMA, requires 0.17 ms. It is to be noted that FalconSign works at a
frequency of 500 MHz, significantly lower than 3.2 GHz and 2.3 GHz, and the execution
cycles are reduced by 4.46× and 3.92×, respectively.

Second, the existing HW/SW implementations of Falcon signature generation are
compared to our work. The work by Karabulut [KA24] accelerates the discrete Gaussian
sampling using an HW/SW co-design approach. Compared to this work, our signing
performance is improved by 484.4×. Our design reduces the sampling cycle count by
96.0× and the signing cycle count by 315.0×. Furthermore, to ensure a fair comparison,
Falcon-512 is also implemented on the Artix-7, consuming LUTs/FFs/DSPs/BRAM/s of
79065/46389/226/45, with a frequency of 65 MHz. This achieves an improvement over
the ATP in [KA24] by 7.9×/7.7×/-/7.5×. And the signing speed has increased by 169
×. The performance improvement benefits from our low-latency Gaussian sampler, which
achieves a lower sampling delay. [KA24] focuses on the large Subtraction-Multiplication
operation in BerExp: y = c− (z×y)� 63. However, the delay of large-digit multiplication

Yi Ouyang et al. 223

in their design is 8 cycles, with a throughput of one multiplication every 4 cycles, which
is not suitable for high-speed scenarios. In our work, the same expected value µ for two
consecutive samplings is utilized, thereby the r and ccs calculations of one sampling are
optimized, leading to a better overall sampling improvement. Moreover, in the entire
signing process, the bottleneck of floating-point vector calculations is addressed. The
ffSampling operation accounts for 90% of the signing time, with FPU and sampling
being the two main operations. Our vectorized FPU architecture and algorithm reduce its
computation time in ffSampling from 75% in [KA24] to 31%.

Yu et al. [YSZ+24] reported a HW/SW implementation based on the RSIC-V extended
instruction set. The work proposed a RISC-V scalar-vector framework and a discrete
Gaussian sampling circuit for efficient Falcon implementation. Although it considered
the sampling bottleneck, it does not accelerate floating-point calculations in ffSampling.
Furthermore, the pipeline design of their sampler is not balanced, achieving a delay of
104 cycles for single sampling at a frequency of only 83MHz. In contrast, our sampling
delay is just 74 cycles at a frequency of 185MHz. Additionally, their work utilized the
floating-point module to calculate integer operations in BerExp, which increases the
complexity of the implementation. Compared to this work, our design improves the signing
performance of Falcon-512/Falcon-1024 by 21.8×/22.3×, respectively. Even if only the
resource consumption of their sampling circuit is considered, our design’s ATP is improved
by 5.1×/1.5×/1.7× for both I/V security levels. In terms of key performance results,
a higher frequency of 185MHz is achieved, and the computation cycles for signing are
reduced by 9.7×/10.0×.

Lee et al. [LYN+24] reported a HW/SW co-design architecture based on Cortex M4 and
ASIC. Compared to this work, our architecture achieves an acceleration of 202.5×/215.1×
in throughput and ATP improved by 10.8×/8.4× on the 28nm process. It is to be noted
that the comparisons only include the hardware part of [LYN+24]. Considering the energy
efficiency, our architecture improves 700.9×/677.4× when both the software (229mW) and
hardware (5.8mW) parts [LYN+24] are included. The results indicate that our design is
also suitable for the energy-saving scenarios.

Schmid et al. [SAW+23] utilized the HLS method to implement Falcon-Sign. Although
this implementation provides some preliminary evaluations of Falcon hardware, it lacks
in-depth architectural explanation and exhibits some unknown issues. For instance, when
instantiating the ChaCha20 module, three modules were instantiated, but only one was used.
Compared to this work, our implementation achieves a 4.9×/5.1× performance improve-
ment for the I/V security levels, with ATP improvements for LUTs/FFs/DSPs/BRAMs of
2.8×/4.6×/4.0×/3.5× and 2.8×/4.5×/4.2×/3.2×, respectively.

6 Conclusion

To the best of our knowledge, this paper proposed the first fine-grained full-hardware
implementation for high-throughput/low-latency Falcon’s signature generation. Memory-
centric overall architecture, optimized tree-like Fast Fourier sampling flow, and several
optimized modules are adopted in our design to fully adapt to Falcon’s characteristics,
which achieves the lowest execution latency and the best ATP compared to state-of-the-art
works. Compared to previous software-hardware co-design and hardware solutions, our
full-hardware implementation significantly reduces the execution latency and explores the
boundaries of Falcon hardware implementation, which may promote its application in
the fields of vehicle networking, payment settlement systems, etc. In the future, we will
continue to support Falcon’s key generation and consider the side-channel resistant design.

224 FalconSign

Acknowledgments
This work is supported in part by the National Key R&D Program of China (Grant No.
2023YFB4403500), and in part by the National Natural Science Foundation of China
(Grant No. 62274102), and in part by the National Key R&D Program of China (Grant
No.2021YFB2701201), and in part by the Postdoctoral Fellowship Program of the CPSF
(Grant No.BX20240204). The authors thank the editors and reviewers for their thoughtful
comments.

References
[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,

and Mark Zhandry. Random oracles in a quantum world. In Advances in
Cryptology–ASIACRYPT 2011: 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings 17, pages 41–69. Springer, 2011.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-
kyber: a cca-secure module-lattice-based kem. In 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

[BHK+19] Daniel J Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. The sphincs+ signature framework. In Proceed-
ings of the 2019 ACM SIGSAC conference on computer and communications
security, pages 2129–2146, 2019.

[DP16] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Proceedings of
the ACM on international symposium on symbolic and algebraic computation,
pages 191–198, 2016.

[Gar22] Mario Garrido. A survey on pipelined fft hardware architectures. Journal of
Signal Processing Systems, 94(11):1345–1364, 2022.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages 197–206, 2008.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based
public key cryptosystem. In International algorithmic number theory symposium,
pages 267–288. Springer, 1998.

[KA24] Emre Karabulut and Aydin Aysu. A hardware-software co-design for the discrete
gaussian sampling of falcon digital signature. In 2024 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 90–100.
IEEE, 2024.

[Kah96] William Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture
Notes on the Status of IEEE, 754(94720-1776):11, 1996.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. Crystals-dilithium. Algorithm
Specifications and Supporting Documentation, 2020.

Yi Ouyang et al. 225

[LYN+24] Yongseok Lee, Jonghee Youn, Kevin Nam, Heon Hui Jung, Myunghyun Cho,
Jimyung Na, Jong-Yeon Park, Seungsu Jeon, Bo Gyeong Kang, Hyunyoung Oh,
et al. An efficient hardware/software co-design for falcon on low-end embedded
systems. IEEE Access, 2024.

[LZS+24] Wai-Kong Lee, Raymond K Zhao, Ron Steinfeld, Amin Sakzad, and Seong Oun
Hwang. High throughput lattice-based signatures on gpus: Comparing falcon
and mitaka. IEEE Transactions on Parallel and Distributed Systems, 35(4):675–
692, 2024.

[NG23] Duc Tri Nguyen and Kris Gaj. Fast falcon signature generation and verification
using armv8 neon instructions. In International Conference on Cryptology in
Africa, pages 417–441. Springer, 2023.

[oST15] National Institute of Standards and Technology. Post-quantum cryptography,
2015. Created January 03, 2017, Updated June 24, 2020.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gre-
gor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Tech-
nical report, National Institute of Standards and Technology, 2020.
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[PJSO24] Siddhartha Patra, Saeed S Jahromi, Sukhbinder Singh, and Román Orús. Effi-
cient tensor network simulation of ibm’s largest quantum processors. Physical
Review Research, 6(1):013326, 2024.

[Por19] Thomas Pornin. New efficient, constant-time implementations of falcon. Cryp-
tology ePrint Archive, 2019.

[RB20] Sujoy Sinha Roy and Andrea Basso. High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 443–
466, 2020.

[SAW+23] Michael Schmid, Dorian Amiet, Jan Wendler, Paul Zbinden, and Tao Wei.
Falcon takes off-a hardware implementation of the falcon signature scheme.
Cryptology ePrint Archive, 2023.

[SD3] NIST Sha and NIST DRAFT. standard: Permutation-based hash and
extendable-output functions. FIPS PUB, 202:2015, 3.

[Sei22] Gregor Seiler. Practical Lattice-Based Zero-Knowledge Proof Systems. PhD
thesis, ETH Zurich, 2022.

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994.

[SKD20] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. Post-
quantum authentication in tls 1.3: a performance study. Cryptology ePrint
Archive, 2020.

[TBRM22] Geoff Twardokus, Nina Bindel, Hanif Rahbari, and Sarah McCarthy. When
cryptography needs a hand: Practical post-quantum authentication for V2V
communications. Cryptology ePrint Archive, Paper 2022/483, 2022. https:
//eprint.iacr.org/2022/483.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2022/483
https://eprint.iacr.org/2022/483

226 FalconSign

[XHY+20] Guozhu Xin, Jun Han, Tianyu Yin, Yuchao Zhou, Jianwei Yang, Xu Cheng,
and Xiaoyang Zeng. Vpqc: A domain-specific vector processor for post-quantum
cryptography based on risc-v architecture. IEEE transactions on circuits and
systems I: regular papers, 67(8):2672–2684, 2020.

[YSZ+24] Xinglong Yu, Yi Sun, Yifan Zhao, Honglin Kuang, and Jun Han. Rvce-fal: A
risc-v scalar-vector custom extension for faster falcon digital signature. In 2024
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1–6. IEEE, 2024.

[ZZL+22] Yihong Zhu, Wenping Zhu, Chongyang Li, Min Zhu, Chenchen Deng, Chen
Chen, Shuying Yin, Shouyi Yin, Shaojun Wei, and Leibo Liu. Repqc: A
3.4-uj/op 48-kops post-quantum crypto-processor for multiple-mathematical
problems. IEEE Journal of Solid-State Circuits, 58(1):124–140, 2022.

[ZZO+24] Yihong Zhu, Wenping Zhu, Yi Ouyang, Junwen Sun, Min Zhu, Qi Zhao, Jinjiang
Yang, Chen Chen, Qichao Tao, Guang Yang, et al. 16.2 a 28nm 69.4 kops 4.4
µj/op versatile post-quantum crypto-processor across multiple mathematical
problems. In 2024 IEEE International Solid-State Circuits Conference (ISSCC),
volume 67, pages 298–300. IEEE, 2024.

[ZZW+22] Cankun Zhao, Neng Zhang, Hanning Wang, Bohan Yang, Wenping Zhu, Zheng-
dong Li, Min Zhu, Shouyi Yin, Shaojun Wei, and Leibo Liu. A compact and
high-performance hardware architecture for crystals-dilithium. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 270–295,
2022.

	Introduction
	Preliminaries
	Notations
	Falcon scheme
	Fast Fourier Sampler

	Design Decisions
	Memory-Centric Overall Architecture
	Dynamic Task Processing

	Optimized Modules
	Compact Data Pre-processing Module
	Vectorized Floating-Point Processing Unit
	Low-Latency Gaussian Sampler
	Other Modules

	Implementation and comparison
	Resources Usage and Performance Results
	Comparisons with Related Works

	Conclusion

