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Abstract. Model stealing attacks on AI/ML devices undermine intellectual property
rights, compromise the competitive advantage of the original model developers, and
potentially expose sensitive data embedded in the model’s behavior to unauthorized
parties. While previous research works have demonstrated successful side-channel-
based model recovery in embedded microcontrollers and FPGA-based accelerators,
the exploration of attacks on commercial ML accelerators remains largely unexplored.
Moreover, prior side-channel attacks fail when they encounter previously unknown
models. This paper demonstrates the first successful model extraction attack on
the Google Edge Tensor Processing Unit (TPU), an off-the-shelf ML accelerator.
Specifically, we show a hyperparameter stealing attack that can extract all layer
configurations including the layer type, number of nodes, kernel/filter sizes, number
of filters, strides, padding, and activation function. Most notably, our attack is
the first comprehensive attack that can extract previously unseen models. This
is achieved through an online template-building approach instead of a pre-trained
ML-based approach used in prior works. Our results on a black-box Google Edge
TPU evaluation show that, through obtained electromagnetic traces, our proposed
framework can achieve 99.91% accuracy, making it the most accurate one to date.
Our findings indicate that attackers can successfully extract various types of models
on a black-box commercial TPU with utmost detail and call for countermeasures.
Keywords: Edge TPU · Side Channel · Hyperparameter · Neural Networks ·
Machine Learning

1 Introduction
Due to the increasing number of connected devices, bandwidth constraints, and the need
for high-speed, low-power, and real-time processing of machine learning (ML) models,
there has been a significant emphasis on conducting ML inference at the edge [MMH+21].
Dedicated ML accelerators, such as the IBM TrueNorth [ASC+15], Intel Movidius Neural
Compute Stick [NCS], Google Edge Tensor Processing Unit (TPU) [TPU], and NVIDIA
NVDLA [NVD], have been introduced to meet this demand. Although there are advantages
to achieving edge intelligence with such devices, there is also a risk of cyberattacks, and,
specifically of, side-channel [CDGK21, NGAD+24] and fault injection attacks [RCYF22].

Given the significant efforts of collecting datasets and training neural networks on ML
accelerators or other hardware platforms such as FPGAs, GPUs, and non-commercial
custom ASICs, the confidentiality and privacy of the trained models need safeguarding.
However, adversaries can still potentially exploit side channel measurements to extract the
model details without any knowledge of the internal structures (i.e., black box) of edge
ML accelerators [WCJ+21c, GJC23]. These attacks can be categorized into two classes:
(i) hyperparameter stealing attacks where the adversary aims to learn the architecture of
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the trained models such as the types of layers and their configurations, and (ii) parameter
stealing attacks where the adversary aims to learn the trained weight and bias values.

A hyperparameter stealing attack followed by parameter extraction can create a high-
fidelity substitute model with the extracted information to mimic the victim model [JCB+20].
In a typical neural network, the hyperparameters refer to the model depth, layer type,
number of nodes, activation function, strides, padding, number of filters, kernel size, and
pool size. The significant reduction in cost and the effort compared to developing a model
from scratch motivates an adversary to model stealing through hyperparameters [OSF19].
Model extraction also assists in other attacks like membership inference [SAB+23, SSSS17]
and input poisoning [CLL+17].

Despite the existing literature on side-channel-based hyperparameter extraction, all
prior works have evaluated a limited search space either with a simple analysis or ML-based
modeling [BBJP19, MXL+22, YMY+20, WCJ+21c, DSRB18, YFT20, HZS18, YLX+23,
WCJ+21a, HCW+24, GJC23, GLXF23]. As such, all hyperparameter stealing attacks
focusing on supervised ML-based training fail when encountered with a previously unseen
model hyperparameter configuration not included in their training set. Moreover, prior
works have largely focused on microcontroller-based designs or FPGA-based solutions
where the adversary knows either the software or hardware stack, if not both.

This paper, for the first time, proposes a framework that can perform comprehensive
hyperparameter extraction. To that end, we first identify the scalability limitation of
existing ML-based approaches for comprehensive extraction that aims to steal previously
unseen models. We then propose a new framework, based on online template matching,
to address the discovered limitation. Finally, we show the application of our framework
using electromagnetic (EM) side-channels on a Google Edge TPU—as a corollary of this
application, we claim the first hyperparameter stealing attack on Google devices.

We propose a sliding window-based correlation technique performing a layer-wise
hyperparameter recovery. Unlike prior works, our attack is capable of extracting all hyper-
parameters associated with the CNN and MLP layers, such as the convolution (Conv),
fully connected (FC), depthwise convolution (DepthConv), and pooling (Pool).
Our key observation is that all “offline” modeling-based approaches need to consider the
previous layers’ hyperparameters to estimate the current layer. This creates a scalability
problem as the search space increases. By contrast, performing “online” modeling enables
divide-and-conquer one layer at a time at the expense of run-time computations.

Our comprehensive framework discloses a major gap in prior works. These works
have exclusively analyzed sequential models comprising a stack of layers, where each
layer has exactly one input tensor and one output tensor. However, there are non-
sequential/functional models with non-linear topology, shared layers, and even multiple
inputs or outputs [HZRS16][non]. Attacking such models is crucial due to their prevalent
use in deep learning models. We demonstrate the first attack on non-sequential models. We
highlight the challenges of extracting non-sequential models and propose novel techniques
to address them.

The main contributions of this paper include the following:

• We develop a framework that comprehensively recovers hyperparameters in run-time
with high accuracy. Our attack framework recovers all hyperparameters of Conv,
FC, DepthConv, and Pool layers that are used in CNN and MLP. This is the first
comprehensive framework that offers online templates instead of offline modeling.
Our approach addresses the scalability limitation of ML-based modeling.

• We demonstrate the first hyperparameter attack on Google Edge TPUs. We leveraged
EM side-channels and exposed unspecified Edge TPU details such as operating
frequency and the active locations on the TPU’s chip surface as part of our attack.

• We test our hyperparameter extraction framework on deep real-world Edge TPU
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models such as MobileNet V3, Inception V3, and ResNet-50. The results show a
99.91% accuracy, which is superior to all prior attacks.

• For the first time, we demonstrate hyperparameter extraction of low-level layers in a
non-sequential model such as the add and the concatenate. We identify the related
challenges and requirements for the successful extraction of such layers.

Our research demonstrates that an adversary can effectively reverse engineer the hyperpa-
rameters of a neural network by observing its EM emanations during inference, even in a
black box setting. The coverage and accuracy of our approach raise significant concerns
about the vulnerability of commercial accelerators like the Edge TPU to model stealing in
various real-world scenarios.

The rest of this paper is organized as follows. Section 2 discusses the background and
threat model of our work. Section 3 exposes unspecified Edge TPU details. Section 4
analyzes the hyperparameter search space and discusses the influence of previous layers
and the limitation of using ML for model extraction. Section 5 describes the proposed
hyperparameter extraction approach. Section 6 discusses the hyperparameter extraction on
non-sequential models. Section 7 evaluates the proposed hyperparameter framework on real-
world models. Section 8 discusses the attack transferability, limitations, countermeasures,
and future work. Section 9 concludes the paper and Section 10 presents ethical disclosure.

2 Background

2.1 Google Edge TPU

This paper analyzes the side-channel vulnerability of the Google Edge TPU, which is an
application-specific integrated circuit (ASIC) designed to execute ML inference at the edge
and is widely used in various Google products such as Pixel and Coral [Cora] devices. It
delivers high-speed ML computations at the edge. The TPU serves as the core for all
Coral devices. Entire inferencing on the Edge TPU is executed using the TensorFlow (TF)
Lite libraries. Precompiled TF Lite models are mapped to the hardware using publicly
available Edge TPU compilers. The Edge TPU compiler performs various proprietary
optimizations to improve performance and energy efficiency.

The Edge TPU was claimed to perform 4 trillion operations per second (TOPS), using
0.5W for each TOPS. Coral offers Edge TPU in various form factors tailored to different
prototyping and production settings. These variations range from embedded systems
deployed in the field to network systems operating on-premise. For instance, Coral’s USB
accelerator is a plug-and-play device, while the Dev board is a single-board computer with
a removable system-on-module (SoM) featuring the Edge TPU. There are other variations
of Coral devices like the Dev board mini, Dev board micro, etc., designed for varying uses.

Figure 1 shows the Coral’s Dev board we use in all our experiments [cor20]. The
Dev board performs fast inference in a small form factor. For instance, it can execute
state-of-the-art mobile vision models such as MobileNet V2 at almost 400 frames per second
at low power. The Dev board can be scaled to production by combining the onboard Coral
SoM with custom printed circuit board hardware. The SoM provides a fully integrated
system, including NXP’s iMX 8M system-on-chip (SoC), eMMC memory, LPDDR4 RAM,
Wi-Fi, Bluetooth, and Google’s Edge TPU coprocessor for ML inferencing. All inferencing
with the TPU is executed using TF Lite libraries with Python or C/C++. The Edge
TPU’s architecture and internal details along with its microarchitecture, instruction set,
and compiler remain undisclosed, making it a black box target.
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Table 1: Literature summary

Ref. Attack
type Target Model information ex-

tracted Limitations

[BBJP19] EM,
timing

ATmega328P,
ARM Cortex-M3
microcontroller

MLP: Activation function,
number of nodes & layers,
weights; CNN: weights

Does not identify Conv padding, strides, kernel
size, Pool size, strides, Relu6 activation; biases
are not extracted; parameter extraction on 32-bit
MCU is not successful

[ZYC+21] Power ZedBoard dual
Cortex-A9

Model topology of CNN &
MLP; hyperparameters of
FC, Conv and Pool

Conv padding is not analyzed; Pool type assumed
as MaxPool; unable to identify Relu6, Softmax
activation; analysis confined to a few (3) real
world models; assumes hyperparameters to be in
a limited range

[JMPR23] EM ARM Cortex-M7
microcontroller

Model topology of CNN &
MLP; hyperparameters of
FC, Conv and Pool

Does not evaluate deep models; does not identify
the Conv activation function, Pool type, strides,
padding; assumes the pool type as MaxPool; ex-
tracts only Relu and Softmax activation functions

[MXL+22] EM,
timing

Nvidia Titan V,
Titan X,

GTX-1080,
GTX-960 GPU

Network topology; activa-
tion function

Extracted the hyperparameters of Conv layer only;
unable to identify Relu6 and Softmax activation

[HLL+20] EM, bus
snooping

NVIDIA K40
GPU Model topology of DNNs Hyperparameters are not extracted

[YMY+20] EM
ZYNQ XC7000
SoC -Pynq-Z1

board

BNN topology; hyperpa-
rameters for all layers;
weights and biases

Has large search space after model recovery; as-
sumes hyperparameters to be in a limited range

[DCA20] Power SAKURA-X
FPGA BNN secret weights Assumes target architecture and hyperparameters

are known

[DSRB18] Timing
Intel Xeon Gold

5115 server
processor

Neural network depth Limited to known models; does not extract other
hyperparameters

[YFT20] Cache

Dell Precision
T1700, 4-core
Intel Xeon E3

processor

Model topology of CNN &
MLP; hyperparameters of
FC, Conv & Pool

Attack limited to scenarios with shared resources;
unable to identify Conv strides, Pool type, Relu6,
Softmax activation

[GFW20] Timing
Intel i7- 7700
quad-core
processor

Weights and biases Considers parameter recovery only in MLP; does
not extract hyperparameters

[HZS18]
Memory
access,
timing

FPGA accelerator

Model topology of CNN &
MLP; zeros in weights of
Conv layer; hyperparame-
ters of Conv & FC

Unable to identify #nodes, activation fn, Pool
layer, and its hyperparameters, Conv padding,
and stride; attack not scalable to targets that
cannot obtain memory access pattern

[GLXF23] EM

AMD-Xilinx Deep
Learning

Processing Unit
(DPU) Xilinx
Zynq ZU3EG

Model topology; weights of
first two layers of a CNN

Does not extract hyperparameters of FC, Pool
and Conv layer like padding, strides and activation
function

[HCW+24] EM,
timing

NVIDIA Jetson
Nano Model topology Attack cannot be scaled to an unknown model;

assumes that the victim model is known

[CW21] EM,
timing

NVIDIA Jetson
Nano

Model topology of MLP; hy-
perparameter of FC

Does not target CNNs; attack is performed only
on shallow MLP models

[YLX+23] Power NVDLA Model topology Does not target extraction of hyperparameters of
layer types; needs extensive training to generalize
the attack

[GJC23] Power,
timing NVDLA Model topology of CNN &

MLP

FC layers are not attacked; Pool type, activation
functions are not recovered; attack confined to
shallow networks; needs training of large number
of models

[WCJ+21a]
Cold
boot
attack

NCS2 Model topology; weights Does not recover layer type and corresponding
hyperparameters; has large search space for model
architectures after attack

[WCJ+21b] EM NCS2 BNN secret weights Only a few BNN secret weights are recovered;
assumes hyperparameters are known

[WCJ+21c] Timing NCS2 Topology of commonly used
ML models

Attack confined to known models and hence not
scalable

This
paper EM Google Edge TPU

Topology of sequential &
non-sequential MLP, CNNs;
hyperparameter of Conv,
FC, DepthConv and Pool
layers

Uses more run-time computation
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Figure 1: TPUXtract recovers the model hyperparameters from the Edge TPU in the
Coral Dev board. The figure shows the back (a), front (b), and SoM (c) of the Coral Dev
board. Source: https://coral.ai/products/dev-board/

2.2 Related Work

Side-channel-based reverse engineering attacks on deep neural networks have gained
attention due to their capability to extract information about the models, including
weights, architecture, hyperparameters, and input data. Prior works show attacks on both
general-purpose hardware including FPGAs, microcontrollers, GPUs, and commercial
deep neural network (DNN) accelerators—Intel Neural Compute Stick 2 (NCS2) [NCS],
and NVDLA [NVD] using various hardware side-channel information such as physical
side-channels (e.g., EM, power, timing), off-chip memory access, and resource sharing (e.g.,
cache and context switching).

We claim that our work is the first to perform an comprehensive hyperparameter
extraction. Moreover, this is the first model stealing attack targeting the Google Edge
TPU, an ML accelerator. Table 1 shows a list of state-of-the-art attacks categorized based
on the type of side-channel leveraged, the target platform, model information extracted,
and limitations compared to our work. The table reflects that the majority of the attacks
are on microcontrollers [BBJP19, JMPR23], FPGAs [YMY+20, DCA20, ZYC+21, HZS18,
GLXF23] and processors [DSRB18, YFT20, GFW20] which are non-commercial ML
accelerators. Attacks targeting GPU are also reported but are limited to extracting
topology [HLL+20], the hyperparameters of the Conv layer only [MXL+22]. Won et al.,
attacked the NCS2, a commercial ML accelerator but assumed that hyperparameters are
known [WCJ+21b]. Other attacks on ML accelerators [GJC23, CW21, HCW+24] recover
a few model hyperparameters, at best a few hundred cases.

Compared to the previous works, this work is more challenging due to the lack of access
to target architecture, operating frequency, instruction set architecture, assembly code, and
compiler details. Although there are prior works to extract parameters [BBJP19, WCJ+21b,
YMY+20, DCA20] and input [WLL+18] to the DNNs, this work focuses on hyperparameter
extraction. Our goal is to comprehensively recover all possible hyperparameters that can
feasibly run on the target device. This is the first work that can reverse engineer all the
hyperparameters of Conv, FC, DepthConv, and Pool layers from a hardware accelerator.
Also, for the first time, we attack non-sequential models and investigate the extraction of
the add and the concatenate layers.
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Figure 2: Operating frequency extraction and hotspot identification. The frequency
spectrum (a) over the Edge TPU reveals the operating frequency of the target as 500MHz.
The hotspot (red tile in (c)) on the TPU is identified by obtaining the heat map (c) after
a scan of the TPU mounted on the Dev board SoM (b). The EM probe is then placed
over the hotspot for side-channel analysis.

2.3 Threat Model
We follow the typical side-channel analysis assumptions [BBJP19, YMY+20, MXL+22]
in hyperparameter extraction—these assumptions also do follow well-known online tem-
plate attack assumptions where an attacker can swap an unknown model and a known
model on the same setup [BCP+19]. The adversary can physically access the target
device during inference and capture EM measurements while neural network inferences
are underway. We assume adversarial knowledge of the target software deployment en-
vironment (TF Lite1 for Edge TPU), adversarial capability to deploy multiple models
on the device, nullify weights/biases of the target model and obtain EM measurements
during inferencing [BBJP19]. The attacker aims to exploit the EM side channel for the
recovery of model hyperparameters. The adversary is capable of feeding random inputs
with known dimensions to the neural network similar to the chosen-plain text attack.
However, the adversary does not need to obtain the inference output to reverse engineer
the model which makes this work stronger than theoretical model extraction attacks
[JSMA19, LM05, WG18, TZJ+16]. Moreover, this work operates in a black-box setting,
where the micro-architecture, compiler, and instructions supported by TPU are unknown.
The attacker does not possess prior knowledge of model architecture, training dataset, or
ML algorithm, making it distinct from theoretical model extraction attacks.

3 Exposing Device Details and Resolving Misalignment
Given the confidentiality of the Edge TPU, the internals and specifications including the
operating frequency are undisclosed to the public. In order to conduct hyperparameter
extraction, the adversary should first identify the correct IC in the SoM, figure out the
operating frequency, and identify the hotspot in the chip that can leak information. The
adversary also needs to find reliable patterns on EM traces to obtain well-aligned triggers.

First, we mechanically removed the cooling fan and the heat sink over the SoM to
improve the signal quality and for closer placement of the probe over the TPU. Second,
we identify the location of the TPU on the SoM using the datasheet [som]. Accurately
determining the hotspot on the TPU is imperative to capture EM signals. We ran inference
on a CNN (Conv-MaxPool-FC-FC), during hotspot identification. We scanned the TPU by
dividing the chip surface into a 10 by 10 grid using a motorized XYZ table and collected

1Our proposed hyperparameter extraction framework is not fundamentally limited to TF Lite framework.
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Figure 3: Real-time triggering with icWaves-transceiver setup that surmounts the challenge
with triggering and trigger alignment. The raw trace (a) obtained in the absence of real-
time triggering captures unnecessary data along with the computations of interest. The
raw trace is loaded to the transceiver for frequency modulation to detect unique triggering
patterns. A distinct pattern is loaded to the icWaves from the transceiver output (b). The
icWaves generates a real-time trigger (c) by matching the pre-loaded pattern with the
traces and feeds it to the oscilloscope thereby capturing the desired computations only.

EM measurements in each grid with a high-sensitivity EM probe. Using the probe with
the XYZ table makes it possible to automate a scan of the complete chip surface to find
the best measurement location. The small step size of the XYZ table provides a very
accurate way of measuring the signal intensity on different areas of the target device.

Figure 2 shows the spectral intensity plot over the TPU surface. In our analysis,
we disregard lower frequencies due to their allocation for various other functions, as
outlined in the datasheet [som]. Specifically, frequencies ranging from 0 to 66MHz are
allocated for purposes such as pulse width modulation, 240MHz for WiFi, and 27MHz
for HDMI, among others. Consequently, we consider frequencies exceeding 240MHz. The
pronounced signal amplitude observed at 500MHz suggests that the operating frequency
of the Edge TPU is 500MHz. Under the assumption that Edge TPU has a 64x64 multiply
crossbar [BGA+21], our predicted frequency of 500MHz matches the claimed 4TOPS
performance. Subsequently, we obtain a heat map of the signals filtered at 500MHz with a
3dB cut-off using a bandpass filter with a frequency range between 498MHz and 502MHz.
The heat map gives the signal intensity with increasing intensity from blue to red. The
red tile in the heat map is identified as the hotspot and the EM probe is positioned at
that location.

We capture EM side-channel traces during inference for hyperparameter recovery.
To capture the measurements when the inference starts, we configure a GPIO pin in
the TPU as a trigger pin. However, the side-channel analysis may encounter challenges
such as excessive data, slow acquisition, and misaligned traces due to large measurement
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windows. Addressing these issues involves detecting patterns in the signal prior to the
start of measurement. Utilizing a real-time pattern detector and a frequency modulator
enables real-time triggering during the acquisition of side-channel measurements. Riscure’s
icWaves equipment aids in real-time trace alignment by matching signals with pre-loaded
patterns by computing the sum of absolute differences. We integrate the icWaves with the
transceiver in our setup. The transceiver, equipped with bandpass filters and AM/FM
demodulation, overcomes the challenge of detecting unique patterns for triggering in
high-frequency switching.

Figure 3a displays the raw trace obtained in the absence of triggering. Without real-time
triggering, both the computation of interest and unnecessary data are captured, resulting in
slow acquisition and misalignment. To address this challenge with triggering, we first pass
the raw trace to the transceiver. Figure 3b illustrates the frequency-modulated output from
the transceiver. Subsequently, a distinct pattern is selected from the transceiver output
and loaded into the icWaves, highlighted in red in Figure 3b. The icWaves then utilizes
this reference pattern to match with the traces in real time. By triggering the oscilloscope
at the onset of computations, depicted in Figure 3c, the icWaves facilitates the real-time
alignment of the computation. Although the pattern match occurs later in the computation,
we introduce a -30µs delay to align the trigger with the computation’s initiation. Offsetting
the trigger timing ensures that the trigger coincides with the beginning of the computation.
Further details of the experimental setup are elaborated in Section 7.

4 Analyzing Search Space, Previous-Layer Influence, and
Machine Learning Limitations

4.1 Hyperparameter Search Space Analysis
Table 2 enumerates the potential hyperparameters for each layer, selected based on their
usage in CNNs on the Edge TPU. The table provides an insight into the total number
of possible configurations for each layer. To reverse engineer a single layer effectively,
the attacker must consider the sum of the number of configurations for Conv (432),
DepthConv (48), Pool(48), and FC (5000) layers which result in a total of 5528 possibilities.
Although this table shows the sequential models, our actual framework also considers
non-sequential ones that further increase the search space. This increase in the search space
is a result of considering the add and concatenate layers. The total search space of 5000+
hyperparameters per layer is an order of magnitude more than the most comprehensive
prior side-channel based attacks [YMY+20, ZYC+21, BBJP19, MXL+22].

Compared to prior works where the search space is limited to a few hundred per layer,
this work comprehensively recovers the hyperparameter by considering all the hyperparam-
eter configurations listed in Table 2. Our approach, despite the large search space per layer,
offers a systematic methodology to navigate and extract the hyperparameters efficiently.
While these configurations are prevalent, our proposed hyperparameter extraction approach
is not confined to these cases and can be extended to accommodate any configuration, e.g.,
when the proposed framework is extended on a new device with different capabilities.

4.2 Influence of Previous Layers in Hyperparameter Extraction
Since each layer in a model operates on the output of the previous one, the EM signature of
a layer is not solely determined by its hyperparameters but also by those of preceding layers.
For instance, the input features for a Conv layer are the output features of the preceding
layer. This makes the attack search space of mth layer in a model nm, where n is the
number of possible hyperparameter configurations for a layer. Therefore, it is not feasible
to isolate the hyperparameters of a layer for analysis without accounting for the influence
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Table 2: Layer-wise search space analysis for sequential models

Layer
type Hyperparameter Possible cases Number of

configurations

Total number of
configurations
(layer-wise)

Number of filters (F) 8 to 2048 (in power of 2) 9
Kernel size (KS) 2 to 7 6

Conv Activation function (Act) relu, relu6 2 432
Strides (S) 1,2 2

Padding (Padd) same, valid 2

Pool

Strides 1,2 2

48Padding same, valid 2
Pool size (PS) 2 to 7 6
Pool type max, avg 2

FC
Number of nodes 1 to 1000 1000 5000
Activation function relu, relu6, tanh,

sigmoid, softmax 5

DepthConv

Kernel size 2 to 7 6

48Activation function relu, relu6 2
Strides 1,2 2
Padding same, valid 2

of preceding layers. This is not a problem for previous works that do not consider a
layer-wise extraction approach [HCW+24]. The works that employ a layer-wise extraction
do not also face this challenge because they do not aim to recover all hyperparameter
configurations resulting in missing scenarios where preceding layers significantly impact
the current layer. The accuracy drop in those works can also be a result of the omission of
the previous layers’ influence.

Given this dependency, the extraction of a layer in a neural network must consider
the combined influence of the hyperparameters of both the current and preceding layers.
Therefore, it is essential to reverse engineer the hyperparameters of the preceding layers
first to extract the hyperparameters of a given layer. This iterative process continues for
each subsequent layer, with each layer’s hyperparameters being extracted based on the
known hyperparameters of its previous layers.

To illustrate this concept clearly, consider two neural networks, A and B. Both models
consist of two layers in the sequence Conv-MaxPool. The input dimension (28x28) and
the hyperparameters of the MaxPool layer are the same in both models. Figure 4a and
4b show the side-channel traces corresponding to models A and B, respectively. Initially,
extracting the hyperparameters of the first layer can be straightforward since no preceding
layers are influencing its pattern. However, upon examining the second layer (MaxPool)
in both models, we notice differences in their layer signatures despite having identical
hyperparameters. This discrepancy arises because the number of filters in the Conv layer of
model A is 8 and B is 32. As the number of channels in the Conv layer (first layer) increases,
the number of channels in the input feature to the MaxPool layer (second layer) increases.
Therefore, although the second layer of both models has identical hyperparameters, they
operate on inputs of different dimensions, leading to large differences in EM trace. In our
example, the input feature to the second layer in model A is of reduced dimension compared
to model B. This observation underscores the necessity of considering the influence of
previous layers’ when extracting the hyperparameters of a given layer. Thus, it is infeasible
to analyze a layer’s pattern in isolation to extract its hyperparameter as performed in
previous ML-based approaches.

Although we show this on a 2-layer network, for a N -layer network the hyperparameter
extraction of N th layer does not just rely on hyperparameters of (N − 1)th layer but on
earlier layers as well. This is because the input to a layer is not solely determined by its
immediate previous layer but by all layers preceding it. For instance, consider two 3-layer
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Figure 4: (a) Model A with the layers Conv-F8-S1-KS2-ActRelu-PaddValid
& MaxPool-S1-PS10-PaddSame (b) Model B with the layers
Conv-F32-S1-KS2-ActRelu-PaddValid & MaxPool-S1-PS10-PaddSame. Though
the second layer (highlighted in red) in models A and B has identical hyperparameters,
they operate on inputs of different dimensions as a result of different hyperparameters of
their previous layer. This leads to large differences in their EM trace.

networks with layers in the sequence Conv-AveragePool-Conv. The hyperparameters of
the second and third layers in both models are identical, while the hyperparameters of the
first layer are different. The differing hyperparameters of the first layer will generate input
features with different dimensions for the second layer in each network. Consequently, the
second layer, acting upon these distinct input dimensions, will produce outputs of different
dimensions, impacting the input to the third layer accordingly. Despite the third layer
having identical hyperparameters in both networks, it will operate on inputs of different
dimensions, leading to variations in their respective side-channel patterns. This example
proves that hyperparameters of each layer influence not only the immediate subsequent
layer but also propagate their effects through the entire network. Thus, the hyperparameter
prediction of N th layer should consider the hyperparameters of all preceding N − 1 layers.

4.3 Limitation of ML in Hyperparameter Extraction
Prior hyperparameter extraction works have used ML given its high accuracy, though the
ML approaches come at the computational cost of training dataset generation and training
effort. The dependency of the current layer’s activity on previous layers’ hyperparameters
creates a challenge for pre-trained ML models used in prior works. For example, while
the first layer can be modeled with ≈5k classes, the second layer will need ≈25M classes.
The computational intensity of using offline ML models for reverse engineering neural
network hyperparameters compounds due to the substantial training costs associated with
processing a large number of configurations for each layer. Specifically, for a model with
K layers, the attacker needs to train for

∏K
i=1 S

i classes, where S represents the search
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space per layer. Although in practice, this search space can be somewhat mitigated by
eliminating less probable configurations, it remains dauntingly large, making it impractical
for attackers to brute-force model all potential cases in deep neural networks. Due to this
reason, prior works have demonstrated the hyperparameter extraction on a limited number
of hyperparameter configurations determined at design time.

Though leveraging offline ML techniques offers promising avenues [YLX+23, HCW+24]
for hyperparameter extraction, their practical implementation is hindered by the signifi-
cant computational demands arising from the comprehensive search space and training
complexities. This challenge calls for a different approach to perform comprehensive
hyperparameter extraction, which we address with an online template-building approach.

5 Proposed Hyperparameter Extraction Approach
We propose a novel approach for generic hyperparameter extraction based on online
template matching with Pearson’s correlation distinguisher. Figure 5 illustrates the attack
framework. Our key idea is to extract each layer’s configuration distinctly, one layer at a
time starting from the first layer, by configuring all possible hyperparameters at run-time
and by comparing them to the observed victim EM trace with unknown hyperparameters.
Once the framework calculates the closest match for the current layer, it will use those
hyperparameters to fix the configuration of the current layer and then proceed to search
the next layer’s hyperparameters until there are no layers left. This enables layer-wise
divide-and-conquer and reduces the search space to n, where n is the number of possible
hyperparameter configurations for a single layer. This approach ensures that the input to
the nth layer matches victim model. Therefore, to extract any layer, the control of inputs
to the first layer is sufficient. This is an advantage of our threat model as the adversary
can apply random input plaintexts to both victim and template models.

The framework starts by applying random inputs to the TPU with unknown hyperpa-
rameters and capturing the EM side-channel trace of the victim model during the inference.
The observed model trace initially reflects the input quantization pattern, followed by the
layer activity. To isolate the layer pattern, we eliminate the input quantization pattern.
In order to find the hyperparameter configuration with the best match, we correlate
the generated side-channel traces of all the templates with the victim model trace using
Pearson correlation. The resulting correlation plot provides the hyperparameters for the
layer and identifies its starting location. The iterative process of template generation for
all hyperparameter configurations and the subsequent trace comparison continue until
hyperparameters for all layers are extracted. Finally, the predictions for each layer are
consolidated to reconstruct the complete model architecture. The components of our
proposed extraction approach are discussed in subsequent subsections.

5.1 Eliminate Input Quantization Pattern
The Edge TPU exclusively supports TF Lite models that have undergone full 8-bit
quantization and subsequent compilation using the Edge TPU compiler. This quantization
process is crucial for enhancing efficiency and reducing model size by converting 32-bit
parameter data into 8-bit representation. However, this quantization introduces a distinct
pattern in the side channel trace before the layer computations. Given that this input
quantization pattern is computationally less intensive compared to layer computations and
consistently precedes the first layer, it can be efficiently eliminated using a simple heuristic.
Our approach involves discarding samples occurring before the commencement of the first
layer. We establish this point using a heuristic where the beginning of the first layer is
identified as the first instance where a predetermined threshold is surpassed. Specifically,
we set this threshold to be 80% of the maximum signal amplitude observed in the EM
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Figure 5: Proposed comprehensive hyperparameter extraction framework. TPUXtract
works layer-wise by reconfiguring a device for all hyperparameters to build online templates
and by matching those with the observed trace with the unknown hyperparameters
successively until all the layers are extracted.

Figure 6: Side channel trace before (a) and after (b) eliminating the input quantization
pattern in the MobileNet V1 model. The input quantization starts at the beginning of the
trace and ends at the first instance where 80% of the maximum signal amplitude in the
EM trace is crossed.

trace. Figure 6a and 6b depicts the observed side-channel trace of the Mobilenet V1
model before and after applying this heuristic to eliminate the input quantization pattern,
showcasing the effectiveness of the method.

5.2 Hyperparameter Prediction using Pearson’s Correlation
The similarity between the EM layer pattern template and the observed victim side channel
trace is quantified with Pearson’s correlation coefficient. To achieve this, layer templates
for all possible hyperparameter configurations are correlated with the victim model trace
within a chosen window. This window is sufficiently large to encompass the attacked layer.
To pinpoint the precise location of the layer beginning, correlation is computed by shifting
the templates by one sample within the window. Subsequently, a correlation matrix P is
generated using Pearson’s correlation, where each row corresponds to a hyperparameter
configuration and each column represents the shift within the window. Figure 7 shows
the Pearson correlation matrix. An element P (x, y) of the matrix denotes the correlation
between the xth hyperparameter template shifted y samples within the window.
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Figure 7: Hyperparameter prediction of a layer L involves correlating templates corre-
sponding to all hyperparameter configurations with the victim trace, thereby generating
Pearson correlation matrix PL. The maximum correlation PL

max(x, y) gives both the
hyperparameter prediction and the start location of the layer.

Figure 8: Side channel trace of MobileNet V1 model after eliminating the input quantization
pattern; layers 1 and 2 are highlighted in red and blue respectively.

Therefore, hyperparameter prediction for a layer L is the maximum of all elements in
the correlation matrix PL, where PL is the matrix obtained by correlating the templates
generated for the layer L with the observed trace of the victim model. As a result, the
maximum correlation value PL

max(x, y) not only identifies the hyperparameter of the layer
(x) but also determines the location of the layer boundary (y). This process enables precise
extraction of layer hyperparameters and their corresponding positions within the trace.

Consider the trace of MobileNet V1 after eliminating the input quantization pattern as
in Figure 8. For layer 1, we generate hyperparameter configurations for all the possible
cases and acquire their corresponding side-channel trace during inference. Subsequently, we
compute the correlation between the observed victim trace and the generated side-channel
templates. From the Pearson correlation plot in Figure 9a, we identify the first layer as
a Conv with filters 8, stride 2, kernel size 3, activation Relu6 and padding
same (denoted by Conv-F8-S2-KS3-ActRelu6-PaddSame in red solid line). The maximum
correlation is at step 1, which is the start of the first layer. The beginning of the first
layer is marked using a red dotted line in Figure 9a. The sinusoidal shape in the Pearson
correlation plot is due to the sinusoidal nature of the convolution layer operation. The
pattern can be attributed to repeated convolutions on multiple batches of input pixels.

Once we identify the first layer, we generate hyperparameter configurations with the
first layer as Conv-F8-S2-KS3-ActRelu6-PaddSame and then vary the second layer to have
all the possible hyperparameter configurations. The correlation plot in Figure 9b correctly
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Figure 9: Pearson correlation plot showing the hyperparameter prediction of (a) layer
1 highlighted in red and (b) layer 2 highlighted in blue. The remaining plots in black
show the correlation of other hyperparameter configurations. The red and blue dotted line
indicates the beginning of the (a) first layer and (b) second layer respectively.

predicts the second layer to be DepthConv with stride 1, kernel size 3, activation
Relu6 and padding same (denoted by DepthConv-S1-KS3-ActRelu6-PaddSame in blue
solid line). Additionally, Figure 9b shows that the start point of the second layer is at
72 samples from the end of the first layer. The offset between the end of a layer and the
beginning of the next layer is accounted for in our framework.

5.3 Identifying the Presence of Additional Layers

The “more layers?” block in the framework determines the existence of additional
layers based on whether there are remaining samples in the victim model trace after the
completion of the previously predicted layer. Therefore, this block takes two inputs: the
victim model trace and the endpoint of the previously predicted layer, denoted as Lp.
The endpoint of the layer (Lp) is calculated as the sum of the number of samples in the
template of Lp and the layer’s starting point, which is identified from y in PLp

max(x, y). To
ascertain the presence of additional layers, we use a heuristic. If the number of samples in
the victim trace after the end of Lp exceeds 5000 samples, we predict that more layers
exist. The hyperparameter prediction process continues for subsequent layers based on the
decision made by the “more layers?” block. If the block determines that additional layers
exist, the framework generates models while keeping the predictions of the previous layers
fixed, followed by the generation of the side channel templates. This iterative approach
allows us to systematically explore and analyze the hyperparameter configurations of each
layer leading to the extraction of the entire neural network architecture.
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Figure 10: Topology and side channel trace without (a, c) and with (b, d) the add and
concatenate layers, respectively. The introduction of an add and concatenate layer in a
non-sequential model generates a discernible pattern within the side channel trace, thereby
facilitating the detection of its presence.

6 Hyperparameter Extraction of Non-Sequential Models
Non-sequential models defy the linear topology of traditional neural networks by incor-
porating shared layers, multiple inputs, or outputs, resulting in non-linear architectures.
While sequential neural networks process layer outputs sequentially, non-sequential models
enable more intricate connections where a layer’s output can serve as input for multiple
subsequent layers. Despite their prevalence in real-world applications, the analysis of
hyperparameters for non-sequential models is, unfortunately, omitted in all prior works
except one [WZZ+20]. In this study, Wei et al. looked at the problem and concluded
that shortcuts/connections [HZRS16] in non-sequential layers cannot be directly identified,
and argued that attackers may leverage domain knowledge to infer them. Examining the
add and concatenate layers within non-sequential models is pivotal for hyperparameter
extraction. These layers operate by combining two input tensors of the same dimensions
to produce a unified output tensor. The add layer computes element-wise addition, while
the concatenate layer concatenates inputs along a specified axis.

The first step in extracting non-sequential model hyperparameters is to identify the
existence of the add and concatenate layers (or the lack thereof). Figures 10a and 10b
illustrate the model topology and side-channel trace of neural networks without and with
add layers, showcasing a distinctive pattern in the trace when an add layer is present.
Similarly, concatenate layers can be identified, as demonstrated in Figure 10c and 10d.
Since the EM signature of the add and the concatenate layers are fixed, their templates
are hard-coded in the hyperparameter framework instead of generating them at run-time.
This saves the generation time of their templates for the hyperparameter prediction of each
layer. Our heuristic on hard-coded intervals is based on experimental data with varying
dimensions. However, the interval does not have to be fixed and could be longer. In such
cases, the start of the next layer is still detectable by increased activity at the end of long
add/concatenate layers. This is a minor change to our flow.

However, beyond merely detecting these low-level layers, it is also crucial to ascertain
the inputs to them in order to fully characterize the neural network topology. The
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Figure 11: Challenge in identifying the add and concatenate layer inputs. Though inputs
to the add layer in (a) and (b) differ—layer 1 and 3 respectively, both give identical side
channel patterns making it difficult to infer the add layer inputs. Similarly, (c) and (d)
show the challenge with concatenate layer.

concatenate layer in Figure 10d receives input from both layer 1 and layer 4 of the model.
It is evident that one of the inputs to the concatenate layer is from layer 4, as indicated
by its pattern immediately preceding the concatenate layer in the side channel trace.
However, the source of the second input cannot be identified from the side-channel trace,
and the input could originate from any layer preceding the concatenate layer—specifically,
it could be from layer 1, layer 2, or layer 3. Therefore, further investigation is necessary
to determine if it is feasible to identify the source of the second input using the available
side-channel information.

Figure 11 demonstrates the challenge of identifying the input of the low-level layers in
non-sequential models. When one input is fixed to layer 4 and the other input is varied
between 1 and 3, there is no clear distinction between the EM traces. Our key insight
to resolve this challenge is to nullify the weights of possible input layers in the victim
model, one layer at a time, and to observe the reduction (or the lack thereof) of the
non-sequential layer’s EM traces. The nullification of layers in the victim model can be
done by techniques such as controlling the inputs to the first layer [GFW20] and fault
injection attacks [BJH+21, TG22]. However, the application of these on the target system
is beyond the scope of this work. In subsequent discussion, we explore the efficacy of our
technique in both the add and concatenate layers.

6.1 Inferring Add Layer Inputs
We propose a selective deactivation approach to identify the inputs to the add layer. The
key idea is to zero out the weights one layer at a time and observe traces for a reduction
in activity to identify the input layers to the add layer. We next formalize our approach in
detail and demonstrate it on sample traces. To identify the second input to the add layer,
we initially hypothesize that the second input originates from layer z, where z represents
any potential input layer. Denoting the add layer with inputs from layer x and y as
Add[Lx, Ly], we first identify Ly directly from the EM trace. Next, we nullify the weights
and biases associated with both Ly and Lx. Subsequently, we derive the side-channel trace
by systematically varying Lx across all possible layer inputs to the add layer. These inputs
include all layers preceding the add layer, excluding Ly.
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Figure 12: Identifying add layer inputs using proposed weight/bias nullifying heuristic.
(a) side channel trace for the model when all the layers are activated; (b), (c), and (d)
plots correspond to side-channel trace when parameters from layers 2, 1, and 3 are zeroed
respectively in addition to layer 4. The reduced amplitude of the add layer signature in
the plot (c) highlighted in green shows that the second input is from layer 1.

Figure 13: Mispredicting inputs to non-sequential layers does not affect hyperparameter
prediction of subsequent layers. Side-channel trace for a model with Add[L1, L4](a), and
Add[L3, L4](b) gives same pattern for the layer following add layer, L5 (highlighted).

If our hypothesis, Add[Lz, Ly], holds true, we anticipate observing diminished activity
in the add layer signature due to the nullification of both inputs. Conversely, any layer Lx

other than Lz would likely result in heightened activity within the add layer. If the initial
hypothesis proves incorrect, the attacker can select an alternative input layer and repeat
the procedure iteratively. This process continues until the chosen layer aligns with the
hypothesis, thereby effectively identifying the second input to the add layer.

To illustrate this process, consider a neural network with an add layer configuration
of Add[Lx, L4], where Lx could be layer 1, 2, or 3. To initiate our hypothesis testing, we
start with L1. Figure 11a displays the model’s topology with Add[L1, L4]. We nullify the
weights and biases of L4 since it is a known input to the add layer. Subsequently, we
nullify the weights and biases of each potential input candidate for the add layer: L1, L2,
and L3, and gather their respective side-channel traces. As depicted in Figure 12, the side
channel trace obtained for Add[L1, L4] exhibits lower activity compared to Add[L2, L4] and
Add[L3, L4], indicating that our hypothesis of L1 serving as the input to the add layer is
accurate. This method enables an attacker to discern the model architecture effectively.

6.2 Inferring Concatenate Layer Inputs
Similar to the add layer, we applied the technique of nullifying weights and biases to deduce
the inputs to the concatenate layer. However, zeroing the inputs to the concatenate
layer did not induce any change in the side-channel data. This is attributed to the
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Figure 14: Complete (a) and closer (b) view of the experimental setup. The schematic
view (c) shows the signal connections in the setup.

fundamental difference in operations between the add and concatenate layers. In the
add layer, the operation entails element-wise addition, resulting in discernible changes in
activity within the side-channel trace. Conversely, in the concatenate layer, the operation
involves simply concatenating the inputs, thereby failing to produce any discernible impact
on activity levels within the side-channel trace. Consequently, our method of identifying
inputs based on selective deactivation of layers proves ineffective for the concatenate
layer. However, despite this limitation, an attacker can follow the approach argued in
prior work and use domain knowledge to identify the layer shortcuts [WZZ+20]. In our
experiments, we assume that the attacker would correctly guess the input connections to
add and concatenate layers. But even when mispredicted, the framework still correctly
predicts the next layer’s hyperparameters as demonstrated in Figure 13. Despite the
different inputs to the add layer in Figure 13a and 13b being L1 and L3, respectively,
the EM pattern of L5 (DepthConv) remains unchanged. Additionally, Figures 11 and 12
generalize this for a different layer type (Conv). These results indicate that the inputs to
the non-sequential layers do not influence the hyperparameters of the subsequent layers.

7 Evaluation of TPUXtract on Real-World Models

7.1 Experimental Setup
The target platform used in all our experiments is the Coral Dev board [cor20] featuring
the Edge TPU. Figure 14a and 14b show the complete and closer view of the experimental
setup respectively. Riscure’s EM probe station which has the the high sensitivity EM
probe and a motorized XYZ table is used for acquiring the EM emanations. This setup
is integrated with the Inspector software for configuration, taking measurements and
subsequently performing analysis. The high-sensitivity probe is capable of measuring weak
emanations from small current loops in the chip and the XYZ table is used to automate a
scan of the complete chip surface to find the best measurement location. The traces are
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captured using a Picoscope 6000E high-end oscilloscope and aligned real-time using the
icWaves and the transceiver.2 The noise in the input signal to the transceiver is attenuated
by 30dB using 10dB and 20dB attenuators in series.

In order to improve the signal quality and for closer placement of the probe to the
TPU, we removed the cooling fan over the SoM mechanically.3 The setup requires flashing
Mendel Linux to the board and then accessing the board’s shell terminal [dev]. This
does not require privileged or root access to the device. A GPIO pin of the Edge TPU is
configured as the trigger pin. This is a coarse-grained trigger used to signal the beginning
of the inference phase (details of triggering are discussed in Section 3). The UART pins of
the board are used for serial communication between the TPU and the host PC. 4

Figure 14c shows the schematic diagram of the experimental setup. The Edge TPU
takes input from the host PC for inference. The TPU sends the trigger signal to the
icWaves to signal the start of the inference. The EM probe sends collected traces to the
transceiver. The transceiver after frequency modulation sends the traces to the icWaves
for alignment. The icWaves obtains the measurements from the transceiver upon receiving
the trigger from the TPU. The icWaves trigger the oscilloscope in real time to capture
EM measurements from TPU. The host machine synchronizes operations and collects the
measurements from the oscilloscope for hyperparameter extraction.

7.2 Results
We employ the Operation Error Rate (OER) as a metric to assess the effectiveness of the
attack [LGL+21, YLX+23]. The OER is computed as L(s′, s)/||s||, where ||s|| represents
the length of the sequence s, and L(s′, s) denotes the edit distance (Levenshtein) between
the predicted operation sequence s′ and the ground-truth sequence s. A lower OER
indicates higher accuracy. In our study, we evaluate the hyperparameter extraction on
TF Lite models 5 optimized for Edge TPU6, as documented in [corb].7 These models are
specifically designed for real-world computer vision applications and are engineered to
accommodate multiple input dimensions. Our assessment involves running inference on all
models outlined in Table 3. Our attack necessitates only a single EM trace per template
during inference. Table 3 presents a detailed breakdown of the models examined, including
their respective applications, OER, and corresponding hyperparameter extraction accuracy.

Our attack demonstrates a high success rate, averaging 99.91%. Predominantly, the
hyperparameters are accurately predicted, with only minor discrepancies observed in one
or two hyperparameter instances within a model across a subset of models. Notably, these
discrepancies do not entail drastic mispredictions, such as an entire layer being incorrectly
inferred, but rather entail slight deviations. For example, in the MobileNet V2 model,
there are 63 layers and a total of 308 hyperparameters. We can predict all 62 layers
accurately, but in one of the layers, while the hyperparameter is an FC with 965 nodes, we
detect it as an FC with 963 nodes. Moreover, our experiments show that a misprediction
in one layer does not affect hyperparameter predictions in subsequent layers. If necessary,
error cascading can be addressed by monitoring the correlation score and adding an error

2Typically, a layer has ∼6000 to 10,000 samples at a 1.25GHz/s sampling rate, resulting in 6000 × N
to 10000 × N samples for N layers. EM traces are captured as .trs files, exported to .csv, and processed in
MATLAB. Our framework is effective with a single trace, improving computation time and storage.

3We used an external cooling fan to cool the device. This fan is not included in the experimental setup,
Figure 14a because of its size.

4We use an AMD Ryzen 9 7950X 16-core processor 4.50GHz host PC for the computations.
5Edge TPU does not support batch normalization; hence, it is not included in our templates. TPU

might be doing internal normalization but this does not affect our attack accuracy.
6Edge TPU does not support batch size greater than one during inference due to dimensional constraints.
7Our framework takes into account only the operations supported by TPU. The evaluation is on models

pre-trained for inference on TPU [corb]. The operations like hard-swish and Conv2DTranspose are not
supported by Edge TPU. From the ground truth, it seems like a hard-swish is implemented with ReLU6
and Conv2DTranspose with Conv2D.
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check with alternative guesses if the score falls below a certain threshold. In summary, our
conducted attack exhibits remarkable efficacy and coverage in reverse-engineering neural
networks, making them superior to all prior efforts.

Table 3: Attack accuracy on real-world models offline-trained for Edge TPU

Application Model N/S No. of
layers Layer types OER Accuracy

Image
classification

EfficientNet-EdgeTpu (S) N 63 C,F,D,A 0.317 99.68%
Inception V1 N 80 C,P,Ct 0 100%
Inception V3 N 95 C,P,D,Ct 0 100%
MobileNet V1 S 28 C,P,D 0 100
MobileNet V2 N 63 C,P,F,D,A 0.324 99.67%
MobileNet V3 N 75 C,D,A 0 100%
ResNet-50 N 75 C,P,F,A 0.584 99.4%

Popular Products V1 N 70 C,P,F,D,A,Ct 0 100%

Object
detection

SSD MobileNet V2 N 104 C,D,A,Ct 0 100%
SSDLite MobileDet N 130 C,A,D,Ct 0 100%
EfficientDet-Lite0 N 242 C,P,D,A,Ct 0 100%

Semantic
segmentation

U-Net MobileNet v2 N 79 C,D,A,Ct 0.294 99.7%
MobileNet v2 DeepLab v3 N 68 C,P,D,A,Ct 0 100%
MobileNet v1 BodyPix N 37 C,D,Ct 0 100%
ResNet-50 BodyPix N 83 C,P,A,Ct 0 100%

Pose
estimation

PoseNet MobileNet V1 N 35 C,D,Ct 0 100%
MoveNet.SinglePose.Lightning N 155 C,D,A,Ct 0 100%

PoseNet ResNet-50 N 80 C,P,A,Ct 0 100%
N:Non-sequential, S:Sequential, C:Conv, P:Pool, F:FC, D:DepthConv, A:Add, Ct:Concatenation

8 Discussion

8.1 Faster Search Space Exploration
The efficiency of our hyperparameter extraction framework can be enhanced by expediting
the exploration of the search space. The hyperparameter search space for each layer,
encompassing all potential configurations, amounts to 5530 possibilities. Our online
template matching approach necessitates approximately 3 hours (≈2.75 hours for template
generation and ≈0.25 hours for hyperparameter prediction) to predict the hyperparameters
of an individual layer. Consequently, for a model comprising k layers, the process of
reverse-engineering the entire set of hyperparameters entails a computational duration
of approximately 3× k hours. This computational overhead can be mitigated by faster
exploration of the search space per layer. A possible approach for faster search space
exploration could be to develop an algorithm that iterates through likely hyperparameter
cases first, thus bypassing unlikely scenarios. The framework may then consider the
improbable cases only if the correlation of predicted hyperparameters is low. To identify
the likely hyperparameter configurations, several strategies can be employed:

• Utilize common trends observed among most models, such as ensuring that a
Pool layer cannot be a first layer in a neural network, consecutive Pool layers
are uncommon, and a Conv or Pool layer typically succeeds a Conv layer.

• Employ dynamic adjustment of the search space by eliminating unlikely cases or
prioritizing the most probable scenarios based on preceding layer predictions within
a given model. For instance, if a pattern emerges in a model, such as alternating
Conv and DepthConv layers or the presence of shortcuts after every third layer, the
algorithm can adapt accordingly.
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• Incorporate domain knowledge into the algorithm. For example, if the model
architecture is known to be restricted to MLP, only FC layers need to be considered.

Therefore, the development of a faster search space exploration algorithm represents a
promising avenue to accelerate our hyperparameter extraction framework. By intelligently
navigating through likely scenarios and adapting to individual model characteristics, this
algorithm can reduce the hyperparameter extraction time while preserving accuracy.

8.2 Attack Transferability
Our framework is versatile for extension to operate across various devices and software
deployment environments. The requirements for attack transferability are the adversarial
knowledge of the target software deployment environment, attacker’s capability to capture
side-channel information during inference and generate templates online. By contrast,
prior ML-based hyperparameter extraction methodologies necessitate the creation of new
training datasets for each unique device, model, or layer type. Our framework incorporates
new layers or model types by merely entailing their addition into the existing search
space, followed by the generation of corresponding templates. Moreover, the adversary
can assess the effectiveness of the heuristics employed in the attack framework for a new
target; otherwise, they can refine these heuristics accordingly. Our framework sets certain
thresholds, e.g., for eliminating input quantization pattern and identifying the presence
of additional layers, which may require dynamic generation at runtime if patterns vary
for a new target. Thus, with minor adjustments, attackers can adapt our framework for
hyperparameter extraction. This inherent adaptability ensures that our approach remains
agnostic to the specific nuances of the device, model, or layer types encountered, rendering
it broadly applicable across diverse neural network architectures and hardware platforms.

8.3 Extraction Countermeasures
The following countermeasures can be pursued to enhance the security of neural

networks against the proposed hyperparameter extraction attack:
• The attack framework eliminates the input quantization pattern and identifies the be-

ginning of the first layer when 80% of the maximum signal amplitude is crossed for the
first time. A simple countermeasure is to add dummy operations during input quanti-
zation to increase the activity above the threshold. This can cause desynchronization
resulting in incorrect identification of the layers and hyperparameters.

• Adding dummy operations between random layers can introduce activity in the
EM side-channel trace at different locations each time depending on when the
dummy operations are performed. Another approach is to dynamically alter the layer
execution order with each inference run. Both techniques result in desynchronization,
causing the template-matching framework for hyperparameter extraction to fail.

• Running random concurrent operations on TPU during inference can introduce noise
which makes the layer signatures less discernible making the approach fail.

• Utilizing ensemble methods, such as random forests, can aggregate predictions from
multiple individual models [TZJ+16]. This aggregation can introduce additional
noise into the side-channel activity, further obfuscating the layer signatures.

• Combining layers on TF Lite files for obfuscation can be an effective countermea-
sure [ZGW+23]. However, this requires modifying deep learning libraries to maintain
correct model computations.
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8.4 Limitations
Although we highlight various limitations of our approach throughout the paper, here

we provide a summary: (i) The attack is limited to extracting hyperparameters and
does not target the extraction of model parameters. (ii) The hyperparameter extraction
framework requires approximately 3 hours of run-time computation per layer. (iii) To
identify the inputs to non-sequential layers, the attacker needs to nullify the weights and
biases of the input layers. However, our heuristic approach for nullifying parameters to
identify the inputs to the concatenate layer is not feasible.

9 Conclusion
Neural networks represent valuable intellectual properties that are susceptible to model
theft attacks, even in black box scenarios. In this work, we present the first comprehensive
neural network hyperparameter extraction attack and we target the Google Edge TPU for
the first time through EM side-channel analysis. Leveraging an online template-matching
approach, we comprehensively recover all hyperparameters of CNN and MLP networks.
Our evaluation, conducted on real-world models such as MobileNet V3, Inception V3, and
ResNet-50, offline-trained on the Edge TPU, showcases an accuracy of 99.91%. Furthermore,
we unveil undisclosed device details such as operating frequency and hotspot location.
Moreover, for the first time, we demonstrate the extraction of low-level layers such as add
and concatenate in non-sequential models. Our results show the attacker’s capability to
reverse-engineer different models from a commercial black-box TPU, highlighting the need
for defenses. The proposed framework can be enhanced by faster search-space exploration.
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